Renewable high-density spiro-fuels are synthesized from lignocellulose-derived cyclic ketones for the first time, which show higher density, higher neat heat of combustion and lower freezing point compared with other biofuels synthesized from the same feedstock, and thus represent a new type of renewable high-density fuel attractive for practical applications.
Catalytic cracking of hydrocarbon fuels is an effective way to cool aircraft materials under hypersonic flight. Pseudohomogeneous catalysis is an alternative to overcome the problems of traditional catalyst coatings. Herein, we employed the Brust−Schiffrin method to synthesize Pt and Pd nanoparticles (NPs) using oleylamine as the protecting ligand. The particle size can be controlled by tuning the ratio of protecting ligand, and uniform NPs can be obtained at an oleylamine/NP molar ratio of 2, with Pt and Pd NPs of 1−3 and 2−5 nm, respectively. IR and TG characterizations confirmed that the amine group of oleylamine is chelated on the metal surface whereas the hydrophobic carbon chain is exposed in the hydrocarbon fuel. As a result, the NPs are highly dispersible in jet fuel JP-10 without any precipitation after standing 12 months, providing the possibility of pseudohomogeneous catalysis. Suspensions containing Pt and Pd NPs (50 ppm) exhibited markedly enhanced cracking performance, with cracking conversions, gas yields, and heat sinks at 680 °C that were, respectively, 4.5, 4.4, and 1.3 and 3.1, 3.6, and 1.2 times of pure JP-10. In particular, Pt NPs can reduce the onset temperature of the cracking reaction from 650 to 600 °C. This work demonstrates the potential of fuel-dispersible NPs in hypersonic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.