The accurate monitoring of gamma radiation doses in the environment has become essential due to its effect on human health. In this study, the temperature dependence of NaI (Tl) scintillation detectors based on the daily/annually measured dose rate in the environment as well as the importance of selecting the appropriate radioactive source strength when calibrating NaI (Tl) detectors for gamma radiation monitoring were investigated. The temperature correction coefficients discovered during the calibration of the BDKG-03 detector by Atomtex were verified, and whether the time duration of the measurement interval has an effect on readings of gamma radiation was also investigated in the city of Tomsk. NaI (Tl) scintillation detectors were used to monitor the gamma background radiation in the environment. The detectors were calibrated with both high and low radioactive sources to obtain a temperature correction coefficient in order to stabilize the influence of temperature change on the detector at different time intervals. This was used to study the correlation between the daily and annual dose rates of low gamma background radiation. The results showed that there was a shift in the spectrum of the daily and annual dose rates calculated using the algorithm obtained when the detector was calibrated with a highly radioactive source to the position of the constant coefficient for low-level dose. However, the ones obtained when the detector was calibrated with a low radioactive source and that of the constant coefficient for a low-level dose overlapped each other. This demonstrated that the type of radioactive source used in detector calibration during manufacture has an effect on the temperature correction coefficient, which in turn has an effect on the accuracy of the ambient dose rate when used to monitor gamma radiation. The duration of the time interval for measurement was found to be very important since it has an effect on dose rate readings.
Scintillation detectors, which are widely used in environmental field study for measurement of radiation dose, are devices that experience wide range of temperature changes when in use. One of the characteristic of scintillation detectors are that, they are very sensitive to change in temperature and hence, every scintillation detector have temperature stabilization inside them. The temperature-dependence coefficient which is part of the detector calculation is the simplest stabilization method that is used. In this work, the BDKG-03 scintillation detector which is used to measure gamma radiation was operated under a controlled condition using a climatic chamber. The BDKG-03 scintillation detector has a temperature stabilizing built-in algorithm. The dose rate and count rate of the gamma background radiation for different temperatures ranging from -40 – +40 °C in increment of 10 °C were measured and studied. The main aim of this work was to study the effect of different ranges of temperature for subsequent calculation of temperature correction coefficient. An analytical result from the experimental result shows that dose rate measurement using the built-in algorithm gives a precise reading as temperature increases. The temperature correction coefficient was found based on dependence. Сцинтилляционные детекторы широко используются в исследованиях окружающей среды для измерения дозы облучения и представляют собой устройства, которые используются в широком диапазоне температур. Одной из характеристик сцинтилляционных детекторов является чувствительность к изменениям температуры, и, следовательно, каждый сцинтилляционный детектор имеет встроенный алгоритм температурной стабилизации. Коэффициент температурной зависимости, который является частью автоматических расчетов детектора, представляет собой простейший метод стабилизации. В данной работе сцинтилляционный детектор БДКГ-03, используемый для измерения гамма-излучения, работал в контролируемых условиях с использованием климатической камеры. Сцинтилляционный детектор БДКГ-03 имеет встроенный заводской алгоритм стабилизации температуры. Были измерены и исследованы мощность дозы и скорость счета фонового гамма-излучения для различных температур от -40 до +40 °C с шагом в 10 °C. Основной целью данной работы было изучение влияния различных диапазонов температур для последующего расчета температурного поправочного коэффициента. Результат эксперимента показывает, что измерение мощности дозы с использованием встроенного алгоритма дает более точные показания в верхнем диапазоне рабочих температур.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.