The competition of monovalent and divalent cations for proximity to negatively charged DNA is of biological importance and can provide strong constraints for theoretical treatments of polyelectrolytes. Resonant x-ray scattering experiments have allowed us to monitor the number and distribution of each cation in a mixed ion cloud around DNA. These measurements provide experimental evidence to support a general theoretical prediction: the normalized distribution of each ion around polyelectrolytes remains constant when ions are mixed at different ratios. In addition, the amplitudes of the scattering signals throughout the competition provide a measurement of the surface concentration parameter that predicts the competition behavior of these cations. The data suggest that ion size needs to be taken into account in applying Poisson-Boltzmann treatments to polyelectrolytes such as DNA.
The multislice method, pioneered by Cowley and Moodie, has recently been adapted to simulate annular dark-field scanning transmission electronmicroscope (ADF STEM) images. This paper presents a series of calculations using this new approach with experimental parameters appropriate for a VG-HB501 STEM to investigate the visibility of single heavy adatoms on thin crystalline silicon membranes. The tendency for electrons to channel along columns of atoms in crystals can greatly increase the intensity incident on an adatom on the exit surface, thereby increasing the adatom visibility. The simulations indicate that an adatom on the exit surface on a column of crystal atoms is up to three times as visible as an adatom on the entrance surface, and that the adatom remains highly visible as the crystal thickness is increased. Tilting the specimen or displacing the adatom from the column appears to lower the visibility of the adatom dramatically. These calculations suggest that, with the appropriate imaging conditions, a single gold adatom may be visible on at least 235 of (111) silicon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.