BackgroundA substantial decline in malaria was reported to have occurred over several years until 2007 in the western part of The Gambia, encouraging consideration of future elimination in this previously highly endemic region. Scale up of interventions has since increased with support from the Global Fund and other donors.Methodology/Principal FindingsWe continued to examine laboratory records at four health facilities previously studied and investigated six additional facilities for a 7 year period, adding data from 243,707 slide examinations, to determine trends throughout the country until the end of 2009. We actively detected infections in a community cohort of 800 children living in rural villages throughout the 2008 malaria season, and assayed serological changes in another rural population between 2006 and 2009. Proportions of malaria positive slides declined significantly at all of the 10 health facilities between 2003 (annual mean across all sites, 38.7%) and 2009 (annual mean, 7.9%). Statistical modelling of trends confirmed significant seasonality and decline over time at each facility. Slide positivity was lowest in 2009 at all sites, except two where lowest levels were observed in 2006. Mapping households of cases presenting at the latter sites in 2007–2009 indicated that these were not restricted to a few residual foci. Only 2.8% (22/800) of a rural cohort of children had a malaria episode in the 2008 season, and there was substantial serological decline between 2006 and 2009 in a separate rural area.ConclusionsMalaria has continued to decline in The Gambia, as indicated by a downward trend in slide positivity at health facilities, and unprecedented low incidence and seroprevalence in community surveys. We recommend intensification of control interventions for several years to further reduce incidence, prior to considering an elimination programme.
It is not known why people are more susceptible to bacterial infections such as non-Typhoid Salmonella (NTS) during and after a malaria infection but, in mice, malarial hemolysis impairs resistance to NTS by impairing the neutrophil oxidative burst. This acquired neutrophil dysfunction is a consequence of induction of the cytoprotective, heme degrading enzyme heme oxygenase-1 (HO-1) in neutrophil progenitors in bone marrow. In this study, we assessed whether neutrophil dysfunction occurs in humans with malaria and how this relates to hemolysis. We evaluated neutrophil function in 58 Gambian children with Plasmodium falciparum malaria (55 (95%) with uncomplicated disease), and examined associations with erythrocyte count, haptoglobin, hemopexin, plasma heme, expression of receptors for heme uptake, and HO-1 induction. Malaria caused the appearance of a dominant population of neutrophils with reduced oxidative burst activity, which gradually normalized over 8 weeks of follow-up. The degree of neutrophil impairment correlated significantly with markers of hemolysis and HO-1 induction. HO-1 expression was increased in blood during acute malaria, but at a cellular level HO-1 expression was modulated by changes in surface expression of the haptoglobin receptor (CD163). These findings demonstrate that neutrophil dysfunction occurs in P. falciparum malaria and support the relevance of the mechanistic studies in mice. Furthermore, they suggest the presence of a regulatory pathway to limit HO-1 induction by hemolysis in the context of infection, and indicate new targets for therapeutic intervention to abrogate the susceptibility to bacterial infection in the context of hemolysis in humans.
Pregnant women have a higher risk of malaria compared to non-pregnant women. This review provides an update on knowledge acquired since 2000 on P. falciparum and P.vivax infections in pregnancy. Maternal risk factors for malaria in pregnancy (MiP) include low maternal age, low parity, and low gestational age. The main effects of MIP include maternal anaemia, low birth weight (LBW), preterm delivery and increased infant and maternal mortality.P. falciparum infected erythrocytes sequester in the placenta by expressing surface antigens, mainly variant surface antigen (VAR2CSA), that bind to specific receptors, mainly chondroitin sulphate A. In stable transmission settings, the higher malaria risk in primigravidae can be explained by the non-recognition of these surface antigens by the immune system. Recently, placental sequestration has been described also for P.vivax infections. The mechanism of preterm delivery and intrauterine growth retardation is not completely understood, but fever (preterm delivery), anaemia, and high cytokines levels have been implicated.Clinical suspicion of MiP should be confirmed by parasitological diagnosis. The sensitivity of microscopy, with placenta histology as the gold standard, is 60% and 45% for peripheral and placental falciparum infections in African women, respectively. Compared to microscopy, RDTs have a lower sensitivity though when the quality of microscopy is low RDTs may be more reliable. Insecticide treated nets (ITN) and intermittent preventive treatment in pregnancy (IPTp) are recommended for the prevention of MiP in stable transmission settings. ITNs have been shown to reduce malaria infection and adverse pregnancy outcomes by 28–47%. Although resistance is a concern, SP has been shown to be equivalent to MQ and AQ for IPTp. For the treatment of uncomplicated malaria during the first trimester, quinine plus clindamycin for 7 days is the first line treatment and artesunate plus clindamycin for 7 days is indicated if this treatment fails; in the 2nd and 3rd trimester first line treatment is an artemisinin-based combination therapy (ACT) known to be effective in the region or artesunate and clindamycin for 7 days or quinine and clindamycin. For severe malaria, in the second and third trimester parenteral artesunate is preferred over quinine. In the first trimester, both artesunate and quinine (parenteral) may be considered as options. Nevertheless, treatment should not be delayed and should be started immediately with the most readily available drug.
Heme oxygenase 1 (HO-1) is an essential enzyme induced by heme and multiple stimuli associated with critical illness. In humans, polymorphisms in the HMOX1 gene promoter may influence the magnitude of HO-1 expression. In many diseases including murine malaria, HO-1 induction produces protective anti-inflammatory effects, but observations from patients suggest these may be limited to a narrow range of HO-1 induction, prompting us to investigate the role of HO-1 in malaria infection. In 307 Gambian children with either severe or uncomplicated P. falciparum malaria, we characterized the associations of HMOX1 promoter polymorphisms, HMOX1 mRNA inducibility, HO-1 protein levels in leucocytes (flow cytometry), and plasma (ELISA) with disease severity. The (GT) n repeat polymorphism in the HMOX1 promoter was associated with HMOX1 mRNA expression in white blood cells in vitro , and with severe disease and death, while high HO-1 levels were associated with severe disease. Neutrophils were the main HO-1-expressing cells in peripheral blood, and HMOX1 mRNA expression was upregulated by heme-moieties of lysed erythrocytes. We provide mechanistic evidence that induction of HMOX1 expression in neutrophils potentiates the respiratory burst, and propose this may be part of the causal pathway explaining the association between short (GT) n repeats and increased disease severity in malaria and other critical illnesses. Our findings suggest a genetic predisposition to higher levels of HO-1 is associated with severe illness, and enhances the neutrophil burst leading to oxidative damage of endothelial cells. These add important information to the discussion about possible therapeutic manipulation of HO-1 in critically ill patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.