Locally varying selection on pathogens may be due to differences in drug pressure, host immunity, transmission opportunities between hosts, or the intensity of between-genotype competition within hosts. Highly recombining populations of the human malaria parasite Plasmodium falciparum throughout West Africa are closely related, as gene flow is relatively unrestricted in this endemic region, but markedly varying ecology and transmission intensity should cause distinct local selective pressures. Genome-wide analysis of sequence variation was undertaken on a sample of 100 P. falciparum clinical isolates from a highly endemic region of the Republic of Guinea where transmission occurs for most of each year and compared with data from 52 clinical isolates from a previously sampled population from The Gambia, where there is relatively limited seasonal malaria transmission. Paired-end short-read sequences were mapped against the 3D7 P. falciparum reference genome sequence, and data on 136,144 single nucleotide polymorphisms (SNPs) were obtained. Within-population analyses identifying loci showing evidence of recent positive directional selection and balancing selection confirm that antimalarial drugs and host immunity have been major selective agents. Many of the signatures of recent directional selection reflected by standardized integrated haplotype scores were population specific, including differences at drug resistance loci due to historically different antimalarial use between the countries. In contrast, both populations showed a similar set of loci likely to be under balancing selection as indicated by very high Tajima’s D values, including a significant overrepresentation of genes expressed at the merozoite stage that invades erythrocytes and several previously validated targets of acquired immunity. Between-population FST analysis identified exceptional differentiation of allele frequencies at a small number of loci, most markedly for five SNPs covering a 15-kb region within and flanking the gdv1 gene that regulates the early stages of gametocyte development, which is likely related to the extreme differences in mosquito vector abundance and seasonality that determine the transmission opportunities for the sexual stage of the parasite.
BackgroundA substantial decline in malaria was reported to have occurred over several years until 2007 in the western part of The Gambia, encouraging consideration of future elimination in this previously highly endemic region. Scale up of interventions has since increased with support from the Global Fund and other donors.Methodology/Principal FindingsWe continued to examine laboratory records at four health facilities previously studied and investigated six additional facilities for a 7 year period, adding data from 243,707 slide examinations, to determine trends throughout the country until the end of 2009. We actively detected infections in a community cohort of 800 children living in rural villages throughout the 2008 malaria season, and assayed serological changes in another rural population between 2006 and 2009. Proportions of malaria positive slides declined significantly at all of the 10 health facilities between 2003 (annual mean across all sites, 38.7%) and 2009 (annual mean, 7.9%). Statistical modelling of trends confirmed significant seasonality and decline over time at each facility. Slide positivity was lowest in 2009 at all sites, except two where lowest levels were observed in 2006. Mapping households of cases presenting at the latter sites in 2007–2009 indicated that these were not restricted to a few residual foci. Only 2.8% (22/800) of a rural cohort of children had a malaria episode in the 2008 season, and there was substantial serological decline between 2006 and 2009 in a separate rural area.ConclusionsMalaria has continued to decline in The Gambia, as indicated by a downward trend in slide positivity at health facilities, and unprecedented low incidence and seroprevalence in community surveys. We recommend intensification of control interventions for several years to further reduce incidence, prior to considering an elimination programme.
BackgroundMalaria parasite population genetic structure varies among areas of differing endemicity, but this has not been systematically studied across Plasmodium falciparum populations in Africa where most infections occur.MethodsTen polymorphic P. falciparum microsatellite loci were genotyped in 268 infections from eight locations in four West African countries (Republic of Guinea, Guinea Bissau, The Gambia and Senegal), spanning a highly endemic forested region in the south to a low endemic Sahelian region in the north. Analysis was performed on proportions of mixed genotype infections, genotypic diversity among isolates, multilocus standardized index of association, and inter-population differentiation.ResultsEach location had similar levels of pairwise genotypic diversity among isolates, although there were many more mixed parasite genotype infections in the south. Apart from a few isolates that were virtually identical, the multilocus index of association was not significant in any population. Genetic differentiation between populations was low (most pairwise FST values < 0.03), and an overall test for isolation by distance was not significant.ConclusionsAlthough proportions of mixed genotype infections varied with endemicity as expected, population genetic structure was similar across the diverse sites. Very substantial reduction in transmission would be needed to cause fragmented or epidemic sub-structure in this region.
Background: The geographic and temporal distribution of M and S molecular forms of the major Afrotropical malaria vector species Anopheles gambiae s.s. at the western extreme of their range of distribution has never been investigated in detail.
Saliva sampling is a promising less-invasive approach for detecting malaria infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.