SummaryBackground-House screening should protect people against malaria. We assessed whether two types of house screening, full screening of windows, doors and closing eaves or installing netting ceilings in local houses, could reduce malaria vector house entry and anaemia in children, in an area of seasonal transmission.
Combination therapy that includes artemisinin derivatives cures most falciparum malaria infections. Lowering transmission by reducing gametocyte infectivity would be an additional benefit. To examine the effect of such therapy on transmission, Gambian children with Plasmodium falciparum malaria were treated with standard regimens of chloroquine or pyrimethamine-sulfadoxine alone or in combination with 1 or 3 doses of artesunate. The infectivity to mosquitoes of gametocytes in peripheral blood was determined 4 or 7 days after treatment. Infection of mosquitoes was observed in all treatment groups and was positively associated with gametocyte density. The probability of transmission was lowest in those who received pyrimethamine-sulfadoxine and 3 doses of artesunate, and it was 8-fold higher in the group that received pyrimethamine-sulfadoxine alone. Artesunate reduced posttreatment infectivity dramatically but did not abolish it completely. The study raises questions about any policy to use pyrimethamine-sulfadoxine alone as the first-line treatment for malaria.
Summary House design may affect an individual's exposure to malaria parasites, and hence to disease. We conducted a randomized‐controlled study using experimental huts in rural Gambia, to determine whether installing a ceiling or closing the eaves could protect people from malaria mosquitoes. Five treatments were tested against a control hut: plywood ceiling; synthetic‐netting ceiling; insecticide‐treated synthetic‐netting ceiling (deltamethrin 12.5 mg/m2); plastic insect‐screen ceiling; or the eaves closed with mud. The acceptability of such interventions was investigated by discussions with local communities. House entry by Anopheles gambiae, the principal African malaria vector, was reduced by the presence of a ceiling: plywood (59% reduction), synthetic‐netting (79%), insecticide‐treated synthetic‐netting (78%), plastic insect‐screen (80%, P < 0.001 in all cases) and closed eaves (37%, ns). Similar reductions were also seen with Mansonia spp., vectors of lymphatic filariasis and numerous arboviruses. Netting and insect‐screen ceilings probably work as decoy traps attracting mosquitoes into the roof space, but not the room. Ceilings are likely to be well accepted and may be of greatest benefit in areas of low to moderate transmission and when used in combination with other malaria control strategies.
BackgroundResistance of malaria parasites to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs.Methods and FindingsIn a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91), or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet]) (n = 406). Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes.Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001). Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001) and were less infectious to mosquitoes at day 7 (p < 0.001) than carriers who had received CQ/SP.ConclusionsCo-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.
Abstract. Larviciding to control malaria was assessed in rural areas with extensive seasonal flooding. Larval and adult mosquitoes and malaria incidence were surveyed routinely in four 100-km 2 areas either side of the Gambia River. Baseline data were collected in 2005. Microbial larvicide was applied to all water bodies by hand application with water-dispersible granular formulations and corn granules weekly from May to November in two areas in 2006 and in the other two areas in 2007 in a cross-over design. The intervention was associated with a reduction in habitats with late stage anopheline larvae and an 88% reduction in larval densities ( P < 0.001). The effect of the intervention on mosquito densities was not pronounced and was confounded by the distance of villages to the major breeding sites and year ( P = 0.002). There was no reduction in clinical malaria or anemia. Ground applications of non-residual larvicides with simple equipment are not effective in riverine areas with extensive flooding, where many habitats are poorly demarcated, highly mobile, and inaccessible on foot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.