Estimating causal connectivity between spiking neurons from measured spike sequences is one of the main challenges of systems neuroscience. In this paper we introduce two nonparametric Bayesian methods for spike-membrane and spikespike causal connectivity based on Gaussian process regression. For spike-spike connectivity, we derive a new semi-analytic variational approximation of the response functions of a non-linear dynamical model of interconnected neurons. This semi-analytic method exploits the tractability of GP regression when the membrane potential is observed. The resulting posterior is then marginalized analytically in order to obtain the posterior of the response functions given the spike sequences alone. We validate our methods on both simulated data and real neuronal recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.