The statistical distribution of financial returns plays a key role in evaluating Value-at-Risk using parametric methods. Traditionally, when evaluating parametric Value-at-Risk, the statistical distribution of the financial returns is assumed to be normally distributed. However, though simple to implement, the Normal distribution underestimates the kurtosis and skewness of the observed financial returns. This article focuses on the evaluation of the South African equity markets in a Value-at-Risk framework. Value-at-Risk is estimated on four equity stocks listed on the Johannesburg Stock Exchange, including the FTSE/JSE TOP40 index and the S & P 500 index. The statistical distribution of the financial returns is modelled using the Normal Inverse Gaussian and is compared to the financial returns modelled using the Normal, Skew t-distribution and Student t-distribution. We then estimate Value-at-Risk under the assumption that financial returns follow the Normal Inverse Gaussian, Normal, Skew t-distribution and Student t-distribution and backtesting was performed under each distribution assumption. The results of these distributions are compared and discussed.
The aim of this paper is to show how options with transaction costs under fractional, mixed Brownian-fractional, and subdiffusive fractional Black-Scholes models can be efficiently computed by using the barycentric Jacobi spectral method. The reliability of the barycentric Jacobi spectral method for space (asset) direction discretization is demonstrated by solving partial differential equations (PDEs) arising from pricing European options with transaction costs under these models. The discretization of these PDEs in time relies on the implicit Runge-Kutta Radau IIA method. We conducted various numerical experiments and compared our numerical results with existing analytical solutions. It was found that the proposed method is efficient, highly accurate and reliable, and is an alternative to some existing numerical methods for pricing financial options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.