UV absorption in the combustion phase of spark-ignition engines strongly influences laser-induced-fluorescence measurements and flame-emission techniques because of the attenuation of a laser and/or signal light. This absorption was assessed with spatial, spectral, and temporal resolutions in an optically accessible research engine. Absorption was measured along a line for different crank-angle positions throughout the combustion phase of the engine by use of spectrally resolved transmittance measurements of both broadband illumination from a deuterium lamp and emission of laser-excited hot oxygen. Evaluating the spatial patterns of absorptivity revealed that no increased absorption can be attributed to the flame-front region and that homogeneous absorption cross sections for the whole burned-gas region can be assumed. The temporal change of absorption was shown to depend on the pressure effect with only negligible changes in absorption cross sections. Results obtained from the absorption measurements are applied for spatially resolved corrections of two-dimensional laser-induced-fluorescence measurements of NO concentration fields obtained under different operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.