This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min.
Development of resorbable elastic composites as an alternative means to apply contractive forces for manipulating craniofacial bones is described herein. Composites made from the biodegradable elastomer, poly (1,8-octanediol co-citric acid) (POC), and hydroxyapatite (nHA) with a 200 nm diameter (0-20% loadings) were created to develop a material capable of applying continuous contractive forces. The composites were evaluated for variation in their mechanical properties, rate of degradation, and interaction of the hydroxyapatite nanoparticles with the polymer chains. First, an ex vivo porcine model of cleft palate was used to determine the rate of cleft closure with applied force. The closure rate was found to be 0.505 mm N(-1) . From this approximation, the ideal maximum load was calculated to be 19.82 N, and the elastic modulus calculated to be 1.98 MPa. The addition of nHA strengthens POC, but also reduces the degradation time by 45%, for 3% nHA loading, compared to POC without nHA. X-ray diffraction data indicates that the addition of nHA to amorphous POC results in the formation of a semicrystalline phase of the POC adjacent to the nHA crystals. Based on the data, we conclude that amongst the 0-20% nHA loadings, a 3% loading of nHA in POC may be an ideal material (1.21 MPa elastic modulus and 13.17 N maximum load) to induce contraction forces capable of facilitating osteogenesis and craniofacial bone repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.