The coronavirus disease 2019 (COVID-19) pandemic is a global crisis, with devastating health, business and social impacts. Vaccination is a safe, simple, and effective way of protecting a person against COVID-19. By the end of August 2021, only 24.6% of the world population has received two doses of a COVID-19 vaccine. Since the emergence of COVID-19, several COVID-19 vaccines have been developed and approved for emergency use. Current vaccines have shown efficacy with low risk of adverse effects. However, COVID-19 vaccines have been related to a relatively small number of cases of heart inflammation, anaphylaxis (allergic reactions), and blood clots formation. On the other hand, COVID-19 vaccination is not recommended for children less than 12 years of age. Furthermore, It has been proposed that some new variants (e.g., Lambda and Delta) are proficient in escaping from the antiviral immunity elicited by vaccination. Herein we present current considerations regarding the COVID-19 vaccines including: efficacy against new variants, challenges in distribution, disparities in availability, dosage gender and race difference, COVID-19 vaccine transport and storage, limitations in children and pregnant women. Long-time monitoring is essential in order to find vaccine efficacy and to rule out related side effects.
Abstract. The objective of the study is to test experimentally the Kuznets curve of energy intensity in selected developing countries (Iran, Turkey, Malaysia, Pakistan, Egypt, Bangladesh, Indonesia and Nigeria) with the focus of D-8 countries during 1990-2014. According to the results, and by using the static and dynamic estimators and the Panel-ARDL model, the Kuznets curve was accepted for energy intensity and the per capita income threshold was estimated $3931.25. The urbanization rate and the degree of industrialization have a positive and significant effect on the GDP of consuming energy of D-8 countries in the long term. The most important policy recommendations were discussed for policy-makers and researchers. JEL classification: Q43, C23, O13.
Knockdown resistance (kdr) is a common mechanism of insecticide resistance in head lice to the conventionally used pyrethroid pediculosis and can be the result of various amino acid substitutions within the voltage-sensitive sodium channel (VSSC). In this study, 54 sequences from varied specimens were investigated to monitor well-known resistance mutations and probable new mutations. The Pediculus humanus capitis de Geer specimens were collected from 13 provinces in Iran. The specimens were stored in 70% ethanol until DNA extraction and PCR amplification of ~900-bp fragment of VSSC. The sequences were analyzed using different bioinformatics software for the detection of well-known kdr substitutions and additional mutations potentially associated with kdr resistance in head lice. There were six new and an old (haplotype I) kdr haplotypes within the Iranian head louse population. K794E, F815I, and N818D amino acid substitutions were reported for the first time. The P813H mutation was the most prevalent amino acid substitution in eight provinces. Among 53 sequences, 26 (49%) were homozygous susceptible, and 27 (51%) were heterozygotes. Thus, 51% of the head lice collected in Iran harbored only the P813H allele. The exact test for the Hardy–Weinberg (H–W) equilibrium showed that genotype frequencies differed significantly from the expectation in East-Azerbaijan and Tehran provinces. Moreover, these populations had an inbreeding coefficient (Fis) <0, indicating the excess of heterozygotes. This observation suggests that the populations of head lice from Iran are currently under active selective pressure. For the rest of the populations, H–W equilibrium and the expectations were significantly in harmony. The results of the current study highlight molecular techniques in the accurate detection of resistance genotypes before their establishment within the head louse population. Accurate detection of resistant genotypes seems to be helpful in decision-making on lice control programs and resistance monitoring and management.
Background: In Iran, the prospect of malaria control relies mainly on insecticides used against the genus Anopheles (Diptera: Culicidae) as important vectors of malaria, arboviruses, and so on. Only eight out of 30 malaria mosquito vectors (Anopheles species) have been examined for insecticide resistance in Iran. This study aimed to review articles related to the incremental trend in insecticide resistance and their mechanisms among anopheline malaria vectors in Iran. Methods: A literature review was conducted based on such search engines as Iran doc, Web of Science, SID, PubMed, Scopus, and Google Scholar websites using the following keywords: "Anopheles," "Malaria," "Resistance," "Vectors," "Insecticide Resistance," and "Iran" for data collection. Published papers in English or Persian covering 1980 to 2020 were reviewed. Results: A total of 1125 articles were screened, only 16 of which were filtered to be pertinent in this review. While most of the mosquito vectors of malaria, such as Anopheles stephensi, were resistant to DDT, dieldrin, malathion, and becoming less susceptible to deltamethrin and other synthetic pyrethroid insecticides, few like Anopheles fluviatilis s. l. were susceptible to all insecticides. A disseminating trend in insecticide resistance among different anopheline mosquito vector species was evident. Metabolic and insecticide target-site resistance mechanisms were involved with organochlorines and pyrethroids, respectively. Conclusions: Insecticide resistance is becoming a severe scourge to the effectiveness of vector-borne disease management measures. This event is especially critical in developing and marginalized communities that applied chemical-based vector elimination programs for malaria; therefore, it is crucial to monitor insecticide resistance in malaria vectors in Iran using biochemical and molecular tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.