This research develops a spectral index to automatically extract asphalt road networks named road extraction index (REI). This index uses WorldView-2 (WV-2) imagery, which has high spatial resolution and is multispectral. To determine the best bands for WV-2, field spectral data using a field spectroradiometer were collected. These data were then analyzed statistically. The bands were selected through the methodology of stepwise discriminant analysis. The appropriate WV-2 bands were distinguished from one another as per significant wavelengths. The proposed index is based on this classification. By applying REI to WV-2 imagery, we can extract asphalt roads accurately. Results demonstrate that REI is automated, transferable, and efficient in asphalt road extraction from high-resolution satellite imagery. Ó 2014 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ by-nc-nd/4.0/).
The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient training data. In this study, a generic model of spatial distribution of roof materials is considered to overcome this limitation. A generic model that is based on spectral, spatial and textural information which is extracted from available training data is proposed. An object-based approach is used to extract the information inherent in the image. Furthermore, linear discriminant analysis is used for dimensionality reduction and to discriminate between different spatial, spectral and textural attributes. The generic model is composed of a discriminant function based on linear combinations of the predictor variables that provide the best discrimination among the groups. The discriminate analysis result shows that of the 54 attributes extracted from the WorldView-2 image, only 13 attributes related to spatial, spectral and textural information are useful for discriminating different roof materials. Finally, this model is applied to different WorldView-2 images from different areas and proves that this model has good potential to predict roof materials from the WorldView-2 images without using training data.
Hyperspectral remote sensing has great application potential for analyzing complex urban scenes. In this study, airborne hyperspectral data over part of Kuala Lumpur, Malaysia were used to classify 14 urban classes. In order to do the classification, Support Vector Machine (SVM) was used. Some filters (Lee and Enhanced Lee) were used before performing the classification. Consequently, the results showed that the overall accuracy is improved (3%-4%) when the filters were applied to the image. The overall accuracy for classification of the study area using SVM is 89% with Kappa coefficient 0.88 without filtering. The use of Lee and Enhanced Lee filters improved the accuracy to 92 and 93.6% respectively. This study serves as a pioneering effort in the application of hyperspectral sensing for urban area in Malaysia.
Detection and mapping the impervious surface accurately is one of the important tasks in urban remote sensing. In this study, airborne hyperspectral data and Worldview-2 image were used to classifY urban area .The main goal of this study are to compare the hyperspectral data and worldview 2 images and shows the potential of worldview 2 images for detection the impervious surface fr om the same area. Support vector machine was used as the classification method in both images. The result shows that the hyperspectral data is more accurate for detection of the materials in urban area especially roof type. The overall accuracy is 78% with 0.72 Kappa coefficients but on the other hand the overall accuracy of worldview 2 image is 72% with 0.65 Kappa coefficients. Thus finally based on the result the airborne hyperspectral data is more suitable for detecting the impervious surface in more detail but still there are some limitations. Furthermore the worldview 2 image shows good potential for detection the impervious surface in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.