Highlights
We address physician scheduling problem of a hospital during COVID-19 pandemic.
The hospital opened new departments dealing with patients infected with COVID-19.
We develop a MIP model and embed it into a spreadsheet based DSS.
The DSS is able to generate balanced shifts for both regular and COVID-19 workloads.
Examination timetabling is an inevitable problem of educational institutions. Each institution has its own particular limitations; however, the main structure is the same: assigning exams to time slots and classrooms. Several institutions solve the problem manually, but it becomes more difficult every year with increasing numbers of students and limited resources. There are many studies in the literature addressing the examination timetabling problem (ETP) and providing high quality solutions within reasonable amounts of time. Nevertheless, almost none of them can be used in practice since they are not converted into a decision support system (DSS). Commercial DSSs, on the other hand, are generally transactionally based and do not have optimization capabilities, i.e. they prevent conflicts via functional user interfaces. In this study, we propose a mixed integer programming (MIP) model that addresses the ETP of the
Sağlık hizmetlerinin kesintisiz sürdürülebilmesi için diğer sağlık çalışanları gibi hemşireler de nöbet tutarak çalışmak zorundadırlar. Oldukça zorlayıcı şartlar altında çalışan hemşireler için nöbet çizelgelerinin adil ve dengeli olması çok önemlidir, aksi takdirde fiziksel ve psikolojik olarak olumsuz etkilenirler. Bu kadar önemli olmasına karşın hemen her sağlık kurumunda bu çizelgeler manuel olarak hazırlanmaktadır. Akademik yayınlar ile geliştirilen çözüm metotları ise bir karar destek sistemine dönüştürülemediği için sürdürülebilir değildir. Bu çalışmada İstanbul'da yer alan bir hastanenin kardiyovasküler cerrahi servisinin hemşire nöbet çizelgeleme problemi ele alınmıştır. Problem için öncelikle bir karma tam sayılı programlama modeli oluşturulmuştur. Sonrasında bu model, yazılım bilgisi sınırlı son kullanıcılara hitap eden bir karar destek sistemine dönüştürülmüştür. Bu sistem sayesinde adil ve dengeli nöbet çizelgeleri çok kısa sürede oluşturulabilmektedir.Nurses have to work in shifts to sustain continuous health services like other healthcare staff. Nurses have very challenging working conditions, hence the schedules have to be prepared in a fair and balanced way, otherwise, their physical and psychological conditions can be affected negatively. Despite its importance, these schedules are prepared manually in almost all healthcare institutions. The academic studies are not sustainable since they are not transformed into decision support tools. In this study, nurse scheduling problem of cardiovascular surgery service of a hospital in Istanbul is addressed. First, a mixed integer programming model is proposed for the problem. Then a decision support system is prepared for users who has limited technical abilities. This system enables users to prepare fair and balanced shift schedules in a very short time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.