Detection and prediction of the novel Coronavirus present new challenges for the medical research community due to its widespread across the globe. Methods driven by Artificial Intelligence can help predict specific parameters, hazards, and outcomes of such a pandemic. Recently, deep learning-based approaches have proven a novel opportunity to determine various difficulties in prediction. In this work, two learning algorithms, namely deep learning and reinforcement learning, were developed to forecast COVID-19. This article constructs a model using Recurrent Neural Networks (RNN), particularly the Modified Long Short-Term Memory (MLSTM) model, to forecast the count of newly affected individuals, losses, and cures in the following few days. This study also suggests deep learning reinforcement to optimize COVID-19's predictive outcome based on symptoms. Real-world data was utilized to analyze the success of the suggested system. The findings show that the established approach promises prognosticating outcomes concerning the current COVID-19 pandemic and outperformed the Long Short-Term Memory (LSTM) model and the Machine Learning model, Logistic Regresion (LR) in terms of error rate.
The creation of digital marketing has enabled companies to adopt personalized item recommendations for their customers. This process keeps them ahead of the competition. One of the techniques used in item recommendation is known as item-based recommendation system or item–item collaborative filtering. Presently, item recommendation is based completely on ratings like 1–5, which is not included in the comment section. In this context, users or customers express their feelings and thoughts about products or services. This paper proposes a machine learning model system where 0, 2, 4 are used to rate products. 0 is negative, 2 is neutral, 4 is positive. This will be in addition to the existing review system that takes care of the users’ reviews and comments, without disrupting it. We have implemented this model by using Keras, Pandas and Sci-kit Learning libraries to run the internal work. The proposed approach improved prediction with [Formula: see text] accuracy for Yelp datasets of businesses across 11 metropolitan areas in four countries, along with a mean absolute error (MAE) of [Formula: see text], precision at [Formula: see text], recall at [Formula: see text] and F1-Score at [Formula: see text]. Our model shows scalability advantage and how organizations can revolutionize their recommender systems to attract possible customers and increase patronage. Also, the proposed similarity algorithm was compared to conventional algorithms to estimate its performance and accuracy in terms of its root mean square error (RMSE), precision and recall. Results of this experiment indicate that the similarity recommendation algorithm performs better than the conventional algorithm and enhances recommendation accuracy.
<abstract><p>With the recent advancement in analytic techniques and the increasing generation of healthcare data, artificial intelligence (AI) is reinventing the healthcare system for tackling pandemics securely in smart cities. AI tools continue register numerous successes in major disease areas such as cancer, neurology and now in new coronavirus SARS-CoV-2 (COVID-19) detection. COVID-19 patients often experience several symptoms which include breathlessness, fever, cough, nausea, sore throat, blocked nose, runny nose, headache, muscle aches, and joint pains. This paper proposes an artificial intelligence (AI) algorithm that predicts the rate of likely survivals of COVID-19 suspected patients based on good immune system, exercises and age quantiles securely. Four algorithms (Naïve Bayes, Logistic Regression, Decision Tree and k-Nearest Neighbours (kNN)) were compared. We performed True Positive (TP) rate and False Positive (FP) rate analysis on both positive and negative covid patients data. The experimental results show that kNN, and Decision Tree both obtained a score of 99.30% while Naïve Bayes and Logistic Regression obtained 91.70% and 99.20%, respectively on TP rate for negative patients. For positive covid patients, Naïve Bayes outperformed other models with a score of 10.90%. On the other hand, Naïve Bayes obtained a score of 89.10% for FP rate for negative patients while Logistic Regression, kNN, and Decision Tree obtained scores of 93.90%, 93.90%, and 94.50%, respectively.</p></abstract>
Artificial I ntelligence-based Q uorum s ystems a re used to solve the energy crisis in real-time wireless sensor networks. They tend to improve the coverage, connectivity, latency, and lifespan of the networks where millions of sensor nodes need to be deployed in a smart grid system. The reality is that sensors may consume more power and reduce the lifetime of the network. This paper proposes a quorum-based grid system where the number of sensors in the quorum is increased without actually increasing quorums themselves, leading to improvements in throughput and latency by 14.23%. The proposed artificial intelligence scheme reduces the network latency due to an increase in time slots over conventional algorithms previously proposed. Secondly, energy consumption is reduced by weighted load balancing, improving the network's actual lifespan. Our experimental results show that the coverage rate is increased on an average of 11% over the conventional Coverage Contribution Area (CCA), Partial Coverage with Learning Automata (PCLA), and Probabilistic Coverage Protocol (PCP) protocols respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.