A new method was developed for the analysis of perchlorate in water by using reversed-phase liquid chromatograhy/electrospray ionization-mass spectrometry/mass spectrometry (LC/ESI-MS/MS) in the negative ESI mode. Selective and sensitive perchlorate detection was obtained by monitoring the 35ClO4- --> 35ClO3- and 37ClO4- --> 37ClO3- mass transitions. The 35ClO4- --> 35ClO3- transition was quantitated against the internal standard oxygen-labeled sodium perchlorate (NaCl18O4). Sample pretreatment for the removal of major common anions and dissolved metal ions along with internal standard quantitation sufficiently compensated for ion suppression caused by the matrix. The 37ClO4- --> 37ClO3- transition was examined to provide additional specificity. The method sensitivity, accuracy, and precision were investigated by analyzing fortified blank samples, field samples, and performance evaluation samples. The results (1.01-13.5 microg/L) for the proficiency evaluation samples differed from the certified values (1.04-14.1 microg/L) by 3-18%. The developed reversed-phase LC/ESI-MS/MS method was rapid, accurate, and reproducible. The calculated method detection limits were 0.007 microg/L for deionized reagent water and 0.009 microg/L for synthesized reagent water, respectively. The minimum reporting limit was conservatively set to 0.05 microg/L.
A rapid, sensitive, and cost-effective analytical method was developed for the analysis of selected semivolatile organic compounds in water. The method used an automated online solid-phase extraction technique coupled with programmed-temperature vaporization large-volume injection gas chromatography/mass spectrometry. The water samples were extracted by using a fully automated mobile rack system based on x-y-z robotic techniques using syringes and disposable 96-well extraction plates. The method was validated for the analysis of 30 semivolatile analytes in drinking water, groundwater, and surface water. For a sample volume of 10 mL, the linear calibrations ranged from 0.01 or 0.05 to 2.5 μg$L -1 , and the method detection limits were less than 0.1 μg$L -1 . For the reagent water samples fortified at 1.0 μg$L -1 and 2.0 μg$L -1 , the obtained mean absolute recoveries were 70%-130% with relative standard deviations of less than 20% for most analytes. For the drinking water, groundwater, and surface water samples fortified at 1.0 μg$L -1 , the obtained mean absolute recoveries were 50%-130% with relative standard deviations of less than 20% for most analytes. The new method demonstrated three advantages: 1) no manipulation except the fortification of surrogate standards prior to extraction; 2) significant cost reduction associated with sample collection, shipping, storage, and preparation; and 3) reduced exposure to hazardous solvents and other chemicals. As a result, this new automated method can be used as an effective approach for screening and/or compliance monitoring of selected semi-volatile organic compounds in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.