Using a short-duration step protocol and continuous indirect calorimetry, whole-body rates of fat and carbohydrate oxidation can be estimated across a range of exercise workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise intensity at which MFO occurs (Fatmax). These variables appear to have implications both in sport and health contexts. After discussion of the key determinants of MFO and Fatmax that must be considered during laboratory measurement, the present review sought to synthesize existing data in order to contextualize individually measured fat oxidation values. Data collected in homogenous cohorts on cycle ergometers after an overnight fast was synthesized to produce normative values in given subject populations. These normative values might be used to contextualize individual measurements and define research cohorts according their capacity for fat oxidation during exercise. Pertinent directions for future research were identified.
Purpose We investigated the effect of a 31-d ketogenic diet (KD) on submaximal exercise capacity and efficiency. Methods A randomized, repeated-measures, crossover study was conducted in eight trained male endurance athletes (V˙O2max, 59.4 ± 5.2 mL⋅kg−1⋅min−1). Participants ingested their habitual diet (HD) (13.1 MJ, 43% [4.6 g⋅kg−1⋅d−1] carbohydrate and 38% [1.8 g⋅kg−1⋅d−1] fat) or an isoenergetic KD (13.7 MJ, 4% [0.5 g·kg−1⋅d−1] carbohydrate and 78% [4 g⋅kg−1⋅d−1] fat) from days 0 to 31 (P < 0.001). Participants performed a fasted metabolic test on days −2 and 29 (~25 min) and a run-to-exhaustion trial at 70% V˙O2max on days 0 and 31 following the ingestion of a high-carbohydrate meal (2 g⋅kg−1) or an isoenergetic low-carbohydrate, high-fat meal (<10 g CHO), with carbohydrate (~55 g⋅h−1) or isoenergetic fat (0 g CHO⋅h−1) supplementation during exercise. Results Training loads were similar between trials and V˙O2max was unchanged (all, P > 0.05). The KD impaired exercise efficiency, particularly at >70% V˙O2max, as evidenced by increased energy expenditure and oxygen uptake that could not be explained by shifts in respiratory exchange ratio (RER) (all, P < 0.05). However, exercise efficiency was maintained on a KD when exercising at <60% V˙O2max (all, P > 0.05). Time-to-exhaustion (TTE) was similar for each dietary adaptation (pre-HD, 237 ± 44 vs post-HD, 231 ± 35 min; P = 0.44 and pre-KD, 239 ± 27 vs post-KD, 219 ± 53 min; P = 0.36). Following keto-adaptation, RER >1.0 vs <1.0 at V˙O2max coincided with the preservation and reduction in TTE, respectively. Conclusion A 31-d KD preserved mean submaximal exercise capacity in trained endurance athletes without necessitating acute carbohydrate fuelling strategies. However, there was a greater risk of an endurance decrement at an individual level.
BackgroundLow-carbohydrate, high-fat and ketogenic diets are increasingly adopted by athletes for body composition and sports performance enhancements. However, as yet, there is no consensus on their efficacy in improving performance. There is also no comprehensive literature on athletes’ experiences while undertaking this diet. The purpose of this pilot work was two-fold: i. to examine the effects of a non-calorie controlled ketogenic diet on body composition and performance outcomes of endurance athletes, and ii. to evaluate the athletes’ experiences of the ketogenic diet during the 10-week intervention.MethodsUsing a case study design, five New Zealand endurance athletes (4 females, 1 male) underwent a 10-week ketogenic dietary intervention. Body composition (sum of 8 skinfolds), performance indicators (time to exhaustion, VO2 max, peak power and ventilatory threshold), and gas exchange thresholds were measured at baseline and at 10 weeks. Mean change scores were calculated, and analysed using t-tests; Cohen’s effect sizes and 90% confidence limits were applied to quantify change. Individual interviews conducted at 5 weeks and a focus group at 10 weeks assessed athletes’ ketogenic diet experiences. Data was transcribed and analysed using thematic analysis.ResultsAll athletes increased their ability to utilise fat as a fuel source, including at higher exercise intensities. Mean body weight was reduced by 4 kg ± SD 3.1 (p = 0.046; effect size (ES):0.62), and sum of 8 skinfolds by 25.9 mm ± SD 6.9; ES: 1.27; p = 0.001). Mean time to exhaustion dropped by ~2 min (±SD 0.7; p = 0.004; ES: 0.53). Other performance outcomes showed mean reductions, with some increases or unchanged results in two individuals (VO2 Max: −1.69 ml.kg.min ± SD 3.4 (p = 0.63); peak power: -18 W ± SD 16.4 (p = 0.07), and VT2: -6 W ± SD 44.5 (p = 0.77). Athletes reported experiencing reduced energy levels initially, followed by a return of high levels thereafter, especially during exercise, but an inability to easily undertake high intense bouts. Each athlete reported experiencing enhanced well-being, included improved recovery, improvements in skin conditions and reduced inflammation.ConclusionsDespite performance decrements and some negative experiences, athletes were keen to pursue a modified low-carbohydrate, high-fat eating style moving forward due to the unexpected health benefits they experienced.Trial registrationACTRN: ACTRN12617000613303. Registered 28 April 2017, retrospectively registered.
Profiling physiological attributes is an important role for applied exercise physiologists working with endurance athletes. These attributes are typically assessed in well-rested athletes. However, as has been demonstrated in the literature and supported by field data presented here, the attributes measured during routine physiological-profiling assessments are not static, but change over time during prolonged exercise. If not accounted for, shifts in these physiological attributes during prolonged exercise have implications for the accuracy of their use in intensity regulation during prolonged training sessions or competitions, quantifying training adaptations, training-load programming and monitoring, and the prediction of exercise performance. In this review, we argue that current models used in the routine physiological profiling of endurance athletes do not account for these shifts. Therefore, applied exercise physiologists working with endurance athletes would benefit from development of physiological-profiling models that account for shifts in physiological-profiling variables during prolonged exercise and quantify the 'durability' of individual athletes, here defined as the time of onset and magnitude of deterioration in physiological-profiling characteristics over time during prolonged exercise. We propose directions for future research and applied practice that may enable better understanding of athlete durability.
Short-term recovery of endurance capacity was significantly enhanced with FRU + MAL versus GLU + MAL ingestion during recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.