Thymosin β4 is regarded as the main G-actin sequestering peptide in the cytoplasm of mammalian cells. It is also thought to be involved in cellular events like cancerogenesis, apoptosis, angiogenesis, blood coagulation and wound healing. Thymosin β4 has been previously reported to localise intracellularly to the cytoplasm as detected by immunofluorescence. It can be selectively labelled at two of its glutamine-residues with fluorescent Oregon Green cadaverine using transglutaminase; however, this labelling does not interfere with its interaction with G-actin. Here we show that after microinjection into intact cells, fluorescently labelled thymosin β4 has a diffuse cytoplasmic and a pronounced nuclear staining. Enzymatic cleavage of fluorescently labelled thymosin β4 with AsnC-endoproteinase yielded two mono-labelled fragments of the peptide. After microinjection of these fragments, only the larger N-terminal fragment, containing the proposed actin-binding sequence exhibited nuclear localisation, whereas the smaller C-terminal fragment remained confined to the cytoplasm. We further showed that in digitonin permeabilised and extracted cells, fluorescent thymosin β4 was solely localised within the cytoplasm, whereas it was found concentrated within the cell nuclei after an additional Triton X100 extraction. Therefore, we conclude that thymosin β4 is specifically translocated into the cell nucleus by an active transport mechanism, requiring an unidentified soluble cytoplasmic factor. Our data furthermore suggest that this peptide may also serve as a G-actin sequestering peptide in the nucleus, although additional nuclear functions cannot be excluded.
Thymosin L L 4 possesses actin-sequestering activity and, like transglutaminases, is supposed to be involved in cellular events like angiogenesis, blood coagulation, apoptosis and wound healing. Thymosin L L 4 serves as a specific glutaminyl substrate for transglutaminase and can be fluorescently labeled with dansylcadaverine. Two (Gln-23 and Gln-36) of the three glutamine residues were mainly involved in the transglutaminase reaction, while the third glutaminyl residue (Gln-39) was derivatized with a low efficiency. Labeled derivatives were able to inhibit polymerization of G-actin and could be cross-linked to G-actin by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. Fluorescently labeled thymosin L L 4 may serve as a useful tool for further investigations in cell biology. Thymosin L L 4 could provide a specific glutaminyl substrate for transglutaminase in vivo, because of the fast reaction observed in vitro occurring at thymosin L L 4 concentrations which are found inside cells. Taking these data together, it is tempting to speculate that thymosin L L 4 may serve as a glutaminyl substrate for transglutaminases in vivo and play an important role in transglutaminase-related processes.z 1999 Federation of European Biochemical Societies.
Recombinant plant (birch) profilin was analyzed for its ability to promote actin polymerization from the actin:thymosin L L R and L L W complex. Depending on the nature of the divalent cation, recombinant plant (birch) profilin exhibited two different modes of interaction with actin, like mammalian profilin. In the presence of magnesium ions birch profilin promoted the polymerization of actin from A:TL L R . In contrast, in the presence of calcium but absence of magnesium ions birch profilin was unable to initiate the polymerization of actin from the complex with TL L R . However, under these conditions profilin formed a stable stoichiometric complex with skeletal muscle K Kactin, as verified by its ability to increase the critical concentration of actin polymerization. Chemical cross-linking indicated that birch profilin competes with TL L R for actin binding. Ternary complex formation of birch profilin with actin:DNase I complex was suggested by chemical cross-linking. However, the determination of the critical concentrations of actin polymerization in the simultaneous presence of birch profilin and DNase I indicated that profilin and DNase I did not form a ternary complex. These data indicated a negative co-operativity between the profilin and DNase I binding sites on actin.z 1998 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.