Mitigating climate change to achieve the goal of staying below 2 °C of warming requires urgent reductions of emissions. Demand-side measures mostly focus on the footprints of consumption. Analysing time use can add to understand the carbon implications of everyday life and the potentials and limitations for decarbonising consumption better. We investigate the carbon footprints of everyday activities in Austria. We linked data from the Austrian Time-use Survey and the Austrian Household Budget Survey with the Eora-MRIO for 2009–2010 in order to estimate the household carbon footprints of all time-use activities. We introduce a functional time-use perspective differentiating personal, committed, contracted and free time to investigate the average carbon intensity of activities per hour, for an average day and for the average woman and man. We find that personal time is relatively low-carbon, while household as well as leisure activities show large variation in terms of CO2e footprint/h. The traditional gendered division of labour shapes the time-use patterns of women and men, with implications for their carbon footprints. Further research analysing differences in household size, income, location and availability of infrastructure in their relation to time use is crucial to be able to assess possible pathways towards low carbon everyday life.
Regenerative sustainability is gaining great attention as an essential concept for a transformative process, a re-designed mindset shifting from the narrowed focus of considering particular aspects such as energy efficiency, renewable materials, or sustainable technology towards the creation of a self-regenerating social and ecological system. Apart from being a vision of the future, regenerative sustainability has already been implemented successfully in individual projects, plans, and extensive strategies. The goals of this research are (1) to set up the conceptual framework for regenerative sustainability principles in the built environment; (2) to investigate and identify the drivers and barriers faced during the implementation of regenerative principles in the built environment; and (3) to identify gaps in the paradigm shift towards regenerative districts and macro-level projects. A multi-stage methodology was implemented. First, an in-depth literature review was conducted aiming to understand regenerative sustainability state of the art and define the key principles. Then, quantitative data analysis was conducted aiming to identify drivers and barriers of regenerative implementation in buildings following by semi-structured interviews with the representatives of regenerative buildings or districts. The step-by-step methodology resulted in the identified drivers of applying the regenerative principles, which are available financial incentives; marketing and sales benefits; improved companies/investors market image and competitive market advantage; reduced building lifecycle costs/effective use of energy and resources; enhancement buildings’ users’ well-being; and receiving building certification. The main barriers identified were lack of knowledge and experience working with regenerative materials and technologies by employees, consultants, and construction companies and usage of the available tools that enable such constructions; overall stakeholders’ culture and their resistance to changing their mindset toward a regenerative approach; inadequacy of national and international standards and legislation to address regenerative policies; and increased construction cost and time and lack of financial incentives. Ultimately, during the broad examination of the case studies, regenerative qualities served as a valuable insight to understand barriers and drivers at neighborhood and macro levels.
Linking time use of the inhabitants of a city with their energy consumption and urban form is an approach which allows integration of the social dimension into research on sustainable urban development. While much has been written about the planning of cities and its implications for human social life, the question of the relationship between time-use patterns and urban form remains underexplored. This is all the more astonishing as time-use statistics offer a unique tool for analysing socio-economic changes regarding family and household structures, gender relations, working hours, recreational behaviour and consumption patterns. Furthermore, spatial planning plays a significant role in establishing time structures. With this paper we aim to explore the possibility of using the time-use data of an urban population to find links between individual time-use patterns and urban form. We describe a case study in Vienna where we addressed time use and mobility of citizens in a participatory approach to jointly develop an integrated socio-ecological model of urban time-use patterns and energy consumption. OPEN ACCESSSustainability 2015, 7 8023
The use of technology in construction has allowed a significant increase in comfort and the construction of energy-efficient buildings. However, for indoor environmental comfort, there is no universal standard that fits all. The indoor climate is perceived individually and the requirements are subjectively shaped. In this paper, a literature review is carried out to describe particular aspects relevant to gender. The aim is to raise awareness of these aspects in order to advance equality orientation as an integral part of planning and energy-efficient building concepts. The findings show that thermal comfort is an essential parameter, and up to 3 °C of differences between women and men were found. This difference is most evident in offices where women show a better cognitive performance in a warmer environment, while men do better in colder temperatures. Gender was also found to be an influencing factor of satisfaction with humidity, acoustic conditions, visual comfort, privacy, air quality, health aspects, light preferences, and brightness perception. Moreover, sick-building syndrome is more common among women. In conclusion, the literature confirms that essential indoor environmental quality (IEQ) parameters vary significantly across men and women and should be taken more into account in the practice of building technology.
The Vertical Urban Factory concept reclaims production in multi-story buildings as part of the cityscape. Today, factories are mostly located in monofunctional industrial areas outside of cities due to high land prices and restrictions on motorized individual transport. However, production must be taken into account as a necessary element of lively and mixed urban structures. New urban development concepts are therefore in demand for efficient and space-saving use of commercial and industrial space. We analyzed how multi-story production can be reintegrated into European cities and developed five prototypes considering urban structure and logistics concepts. The prototypes show that multi-story construction is indeed a realizable alternative for limited space resources. While integrating individual production facilities in densely built-up areas fulfils the current transport policy objectives best, the greatest potential of vertical production is located in mixed commercial areas. The vertical urban factory concept promotes sustainability goals on many levels and we therefore recommend it to cities. In this paper, we focus on the transportation aspects and present three of the five prototypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.