Infertility is a growing concern in modern society, with 30% of cases being due to male factors, namely reduced sperm concentration, decreased motility and abnormal morphology. Sperm cells are highly compartmentalized, almost devoid of transcription and translation consequently processes such as protein phosphorylation provide a key general mechanism for regulating vital cellular functions, more so than for undifferentiated cells. Reversible protein phosphorylation is the principal mechanism regulating most physiological processes in eukaryotic cells. To date, hundreds of protein kinases have been identified, but significantly fewer phosphatases (PPs) are responsible for counteracting their action. This discrepancy can be explained in part by the mechanism used to control phosphatase activity, which is based on regulatory interacting proteins. This is particularly true for PP1, a major serine/threonine-PP, for which >200 interactors (PP1 interacting proteins-PIPs) have been indentified that control its activity, subcellular location and substrate specificity. For PP1, several isoforms have been described, among them PP1γ2, a testis/sperm-enriched PP1 isoform. Recent findings support our hypothesis that PP1γ2 is involved in the regulation of sperm motility. This review summarizes the known sperm-specific PP1-PIPs, involved in the acquisition of mammalian sperm motility. The complexes that PP1 routinely forms with different proteins are addressed and the role of PP1/A-kinase anchoring protein complexes in sperm motility is considered. Furthermore, the potential relevance of targeting PP1-PIPs complexes to infertility diagnostics and therapeutics as well as to male contraception is also discussed.
BackgroundHepatitis delta virus (HDV) is considered to be a satellite virus of the Hepatitis B virus. The genome consists of a 1679 nt ssRNA molecule in which a single ORF was identified. This ORF codes for a unique protein, the Delta antigen (HDAg). During transcription, two forms, small (S-HDAg; p24) and large (L-HDAg; p27) of this antigen are derived as a result of an editing mechanism catalyzed by cellular adenosine deaminase 1. Despite its simplicity, little is still known about the host factors that interact with the virus RNA and antigens being to modulate virus replication.MethodsA yeast two-hybrid screening of a human liver cDNA library, using the hepatitis delta virus (HDV) small antigen (S-HDAg) as bait, was performed. Blot overlay and co-immunoprecipitation assays were used in an attempt to confirm the interaction of hnRNPC and S-HDAg. siRNA knockdown assays of hnRNPC were performed to assess the effect on HDV antigen expression.ResultsThirty known proteins were identified as S-HDAg interactors in the yeast two-hybrid screening. One of the identified proteins, hnRNPC, was found to interact with S-HDAg in vitro and in vivo in human liver cells. The interaction of the two proteins is mediated by the C-terminal half of the S-HDAg which contains a RNA-binding domain (aa 98-195). HDV RNA, S-HDAg, and hnRNPC, were also found to co-localize in the nucleus of human liver cells. Knockdown of hnRNPC mRNA using siRNAs resulted in a marked decreased expression of HDV antigens.ConclusionsS-HDAg was found to interact with human liver proteins previously assigned to different functional categories. Among those involved in nucleic acid metabolism, hnRNPC was found to interact in vitro and in vivo in human liver cells. Similar to other RNA viruses, it seems plausible that hnRNPC may also be involved in HDV replication. However, further investigation is mandatory to clarify this question.
Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function.
The small and large delta antigens (S-HDAg and L-HDAg, respectively) represent two forms of the only protein encoded by the hepatitis delta virus (HDV) RNA genome. Consequently, HDV relies, at a large extent, on the host cell machinery for replication and transcription. Until now, only a limited number of cellular proteins were identified as S-HDAg or L-HDAg partners being involved in the modulation of the virus life cycle. In an attempt to identify cellular S-HDAg-binding proteins we made use of a yeast two-hybrid approach to screen a human liver cDNA library. We were able to identify HuR, a ubiquitously expressed protein involved in RNA stabilization, as an S-HDAg partner both in vitro and in vivo. HuR was found to be overexpressed and colocalize with HDAg in human hepatoma cells. siRNA knockdown of HuR mRNA resulted in inhibition of S-HDAg and L-HDAg expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.