The effect of preventive human papillomavirus (HPV) vaccination on the reduction of the cervical cancer (CC) burden will not be known for 30 years. Therefore, it’s still necessary to improve the procedures for CC screening and treatment. The objective of this study was to identify and characterize cellular targets that could be considered potential markers for screening or therapeutic targets. A pyramidal strategy was used. Initially the expression of 8,638 genes was compared between 43 HPV16-positive CCs and 12 healthy cervical epitheliums using microarrays. A total of 997 genes were deregulated, and 21 genes that showed the greatest deregulation were validated using qRT-PCR. The 6 most upregulated genes (CCNB2, CDC20, PRC1, SYCP2, NUSAP1, CDKN3) belong to the mitosis pathway. They were further explored in 29 low-grade cervical intraepithelial neoplasias (CIN1) and 21 high-grade CIN (CIN2/3) to investigate whether they could differentiate CC and CIN2/3 (CIN2+) from CIN1 and controls. CCNB2, PRC1, and SYCP2 were mostly associated with CC and CDC20, NUSAP1, and CDKN3 were also associated with CIN2/3. The sensitivity and specificity of CDKN3 and NUSAP1 to detect CIN2+ was approximately 90%. The proteins encoded by all 6 genes were shown upregulated in CC by immunohistochemistry. The association of these markers with survival was investigated in 42 CC patients followed up for at least 42 months. Only CDKN3 was associated with poor survival and it was independent from clinical stage (HR = 5.9, 95%CI = 1.4–23.8, p = 0.01). CDKN3 and NUSAP1 may be potential targets for the development of screening methods. Nevertheless, further studies with larger samples are needed to define the optimal sensitivity and specificity. Inhibition of mitosis is a well-known strategy to combat cancers. Therefore, CDKN3 may be not only a screening and survival marker but a potential therapeutic target in CC. However, whether it’s indispensable for tumor growth remains to be demonstrated.
Purpose Cervical cancer is one of the most common causes of cancer mortality for women living in poverty, causing over 28,000 deaths annually in Latin America and 266,000 worldwide. To better understand the molecular basis of the disease we ascertained blood and tumor samples from Guatemala and Venezuela and performed genomic characterization. Experimental Design We performed HPV typing and identified somatically mutated genes using exome and ultra-deep targeted sequencing with confirmation in samples from Mexico. Copy number changes were also assessed in the exome sequence. Results Cervical cancer cases in Guatemala and Venezuela have an average age-of-diagnosis of 50 years, and 5.6 children. Analysis of 675 tumors revealed activation of PIK3CA and other phosphatidyl inositol (PI3K)/AKT pathway genes in 31% of squamous carcinomas and 24% of adeno- and adenosquamous tumors, predominantly at two sites (E542K, E545K) in the helical domain of the PIK3CA gene. This distribution of PIK3CA mutations is distinct from most other cancer types, and does not result in the in vitro phosphorylation of AKT. Somatic mutations were more frequent in squamous carcinomas diagnosed after age 50. Frequent gain of chromosome 3q was found and low PIK3CA mutation fractions in many tumors suggest that PI3K mutation can be a late event in tumor progression. Conclusions PI3K pathway mutation is important to cervical carcinogenesis in Latin America. Therapeutic agents that directly target PI3K could play a role in the therapy of this common malignancy.
Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.
Experiments with T cells from healthy donors in the presence TGF-beta1 or IL-10 suggest that these cytokines have a relevant role in T cell responses during CC progression.
BackgroundStudies of alternative mRNA splicing (AS) in health and disease have yet to yield the complete picture of protein diversity and its role in physiology and pathology. Some forms of cancer appear to be associated to certain alternative mRNA splice variants, but their role in the cancer development and outcome is unclear.MethodsWe examined AS profiles by means of whole genome exon expression microarrays (Affymetrix GeneChip 1.0) in ovarian tumors and ovarian cancer-derived cell lines, compared to healthy ovarian tissue. Alternatively spliced genes expressed predominantly in ovarian tumors and cell lines were confirmed by RT-PCR.ResultsAmong several significantly overexpressed AS genes in malignant ovarian tumors and ovarian cancer cell lines, the most significant one was that of the zinc finger protein ZNF695, with two previously unknown mRNA splice variants identified in ovarian tumors and cell lines. The identity of ZNF695 AS variants was confirmed by cloning and sequencing of the amplicons obtained from ovarian cancer tissue and cell lines.ConclusionsAlternative ZNF695 mRNA splicing could be a marker of ovarian cancer with possible implications on its pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.