Total particulate matter (TPM) and the gas-vapor phase (GVP) of mainstream smoke from the Reference Cigarette 3R4F were assayed in the cytokinesis-block in vitro micronucleus (MN) assay and the in vitro chromosome aberration (CA) assay, both using V79-4 Chinese hamster lung fibroblasts exposed for up to 24 h. The Metafer image analysis platform was adapted resulting in a fully automated evaluation system of the MN assay for the detection, identification and reporting of cells with micronuclei together with the determination of the cytokinesis-block proliferation index (CBPI) to quantify the treatment-related cytotoxicity. In the CA assay, the same platform was used to identify, map and retrieve metaphases for a subsequent CA evaluation by a trained evaluator. In both the assays, TPM and GVP provoked a significant genotoxic effect: up to 6-fold more micronucleated target cells than in the negative control and up to 10-fold increases in aberrant metaphases. Data variability was lower in the automated version of the MN assay than in the non-automated. It can be estimated that two test substances that differ in their genotoxicity by approximately 30% can statistically be distinguished in the automated MN and CA assays. Time savings, based on man hours, due to the automation were approximately 70% in the MN and 25% in the CA assays. The turn-around time of the evaluation phase could be shortened by 35 and 50%, respectively. Although only cigarette smoke-derived test material has been applied, the technical improvements should be of value for other test substances.
In vitro (geno)toxicity assessment of electronic vapour products (EVPs), relative to conventional cigarette, currently uses assays, including the micronucleus and Ames tests. Whilst informative on induction of a finite endpoint and relative risk posed by test articles, such assays could benefit from mechanistic supplementation. The ToxTracker and Aneugen Clastogen Evaluation analysis can indicate the activation of reporters associated with (geno)toxicity, including DNA damage, oxidative stress, the p53-related stress response and protein damage. Here, we tested for the different effects of a selection of neat e-liquids, EVP aerosols and Kentucky reference 1R6F cigarette smoke samples in the ToxTracker assay. The assay was initially validated to assess whether a mixture of e-liquid base components, propylene glycol (PG) and vegetable glycerine (VG) had interfering effects within the system. This was achieved by spiking three positive controls into the system with neat PG/VG or phosphate-buffered saline bubbled (bPBS) PG/VG aerosol (nicotine and flavour free). PG/VG did not greatly affect responses induced by the compounds. Next, when compared to cigarette smoke samples, neat e-liquids and bPBS aerosols (tobacco flavour; 1.6% freebase nicotine, 1.6% nicotine salt or 0% nicotine) exhibited reduced and less complex responses. Tested up to a 10% concentration, EVP aerosol bPBS did not induce any ToxTracker reporters. Neat e-liquids, tested up to 1%, induced oxidative stress reporters, thought to be due to their effects on osmolarity in vitro. E-liquid nicotine content did not affect responses induced. Additionally, spiking nicotine alone only induced an oxidative stress response at a supraphysiological level. In conclusion, the ToxTracker assay is a quick, informative screen for genotoxic potential and mechanisms of a variety of (compositionally complex) samples, derived from cigarettes and EVPs. This assay has the potential for future application in the assessment battery for next-generation (smoking alternative) products, including EVPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.