Super duplex stainless steels (SDSS) have high corrosion resistance because of their high contents of chromium, nickel, molybdenum and nitrogen but low wear resistance. To improve the wear resistance of these steels without affecting their corrosion resistance, samples of SDSS were treated by plasma ion nitriding at temperatures ranging from 350 °C to 570 °C for two hours. This thermochemical treatment resulted in the formation of different types of nitrides that affected the microhardness, the microwear behaviour and the corrosion resistance of the metal surface. The microwear resistance decreased at 400 °C because different nitrides formed on the surface, thereby increasing the hardness and volume wear resistance of the steel. The test results showed that the alloys that were nitrided at 400 °C and 450 °C exhibited the highest corrosion resistance to a solution medium containing chloride ions.
In the context of the decrease in the eye lens dose limit for occupational exposure to 20 mSv per year stated by the recent revision of the European Basic Safety Standards Directive 2013/59/EURATOM, the European Radiation Dosimetry Group (EURADOS) has organised in 2014, for the first time, an intercomparison exercise for eye lens dosemeters. The main objective was to assess the capabilities of the passive eye lens dosemeters currently in use in Europe for occupational monitoring in medical fields. A total of 20 European individual monitoring services from 15 different countries have participated. The dosemeters provided by the participants were all composed of thermoluminescent detectors, of various types and designs. The irradiations were carried out with several photon fields chosen to cover the energy and angle ranges encountered in medical workplace. Participants were asked to report the doses in terms of Hp(3) using their routine protocol. The results provided by each participant were compared with the reference delivered doses. All the results were anonymously analysed. Results are globally satisfactory since, among the 20 participants, 17 were able to provide 90 % of their response in accordance with the ISO 14146 standard requirements.
The dose to the brain can be reduced by using appropriate radiation protection devices. This study has shown that lead caps are less protective than previously described and that the best protection is given by ceiling suspended screens, which are widely available in interventional theatres.
The reduction in the occupational dose limit of the eye lens has created the need for optimising eye protection and dose assessment, in particular for interventional clinicians. Lead glasses are one of the protection tools for shielding the eyes, but assessing the eye lens dose when these are in place remains challenging. In this study, we evaluated the impact of the position of Hp(3) dosemeters on the estimated eye lens dose when lead glasses are used in interventional settings. Using the Monte Carlo method (MCNPX), an interventional cardiology setup was simulated for two models of lead glasses, five beam projections and two patient access routes. Hp(3) dosemeters were placed at several positions on the operator and the obtained dose was compared to the dose to the sensitive part of the eye lens (Hlens). Furthermore, to reproduce an experimental setup, a reference dosemeter, Hp(3)ref, was placed on the surface of the eye. The dose measured by Hp(3)ref was, on average, only 60% of Hlens. Dosemeters placed on the glasses, under their shielding, underestimated Hlens for all parameters considered, by from 10% up to 90%. Conversely, dosemeters placed on the head or on the glasses, over their shielding, overestimated Hlens, on average, up to 60%. The presence or lack of side shielding in lead glasses affected mostly dosemeters placed on the forehead, at the left side. Results suggest that both use of a correction factor of 0.5 to account for the presence of lead glasses in doses measured outside their shielding and placing an eye lens dosemeter immediately beneath the lenses of lead glasses may lead to the underestimation of the eye lens dose. Most suitable positions for eye lens dose assessment were on the skin, unshielded by the glasses or close to the eye, with no correction to the dose measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.