Hardware interlocks that enforce semantic invariants and allow fine-grained privilege separation can be built with reasonable costs given modern semiconductor technology. In the common error-free case, these mechanisms operate largely in parallel with the intended computation, monitoring the semantic intent of the computation on an operation-by-operation basis without sacrificing cycles to perform security checks. We specifically explore five mechanisms: (1) pointers with manifest bounds (fat pointers), (2) hardware types (atomic groups), (3) processor-supported authority, (4) authority-changing procedure calls (gates), and (5) programmable metadata validation and propagation (tags and dynamic tag management). These mechanisms allow the processor to continuously introspect on its operation, efficiently triggering software handlers on events that require logging, merit sophisticated inspection, or prompt adaptation. We present results from our prototype FPGA implementation of a processor that incorporates these mechanisms, quantifying the logic, memory, and latency requirements. We show that the dominant cost is the wider memory necessary to hold our metadata (the atomic groups and programmable tags), that the added logic resources make up less than 20% of the area of the processor, that the concurrent checks do not degrade processor cycle time, and that the tag cache is comparable to a small L1 data cache.
FPGAs have the advantage that a single component can be configured post-fabrication to implement almost any computation. However, designing a one-size-fits-all memory architecture causes an inherent mismatch between the needs of the application and the memory sizes and placement on the architecture. Nonetheless, we show that an energybalanced design for FPGA memory architecture (memory block size(s), memory banking, and spacing between memory banks) can guarantee that the energy is always within a factor of 2 of the optimally-matched architecture. On a combination of the VTR 7 benchmarks and a set of tunable benchmarks, we show that an architecture with internallybanked 8Kb and 256Kb memory blocks has a 31% worstcase energy overhead (8% geomean). In contrast, monolithic 16Kb memories (comparable to 18Kb and 20Kb memories used in commercial FPGAs) have a 147% worst-case energy overhead (24% geomean). Furthermore, on benchmarks where we can tune the parallelism in the implementation to improve energy (FFT, Matrix-Multiply, GMM, Sort, Window Filter), we show that we can reduce the energy overhead by another 13% (25% for the geomean).
This thesis describes the design and implementation of an optical fiber based high speed interface between two computers. The system is particular in that the data transits in a Field Programmable Gate Array (FPGA) situated between each computer and the optical fiber link. The measured full duplex speed for exchanging data between two C programs running on two different computers is over 8Gbit/s, including encoding, protocol and software overhead. This design is suited for applications requiring high bandwidth between two computers, and since an FPGA sees all the data being exchanged, it can be used as a fast and flexible data processing tool: Error correction, debug support, data analysis, encryption and compression are all possible uses where the FPGA can save the Central Processing Unit (CPU) an important amount of computing cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.