Purpose
The effect of processing parameters on the microstructure of steel produced by laser-based powder bed fusion (LPBF) is a recognized opportunity for property design through microstructure control. Because the LPBF generates a textured microstructure associated with high anisotropy, it is of interest to determine the fabrication plane that would generate the desired property distribution within a component.
Design/methodology/approach
The microstructure of 316 L produced by LPBF was characterized experimentally (optical, scanning electron microscopy, glow discharge emission spectrometry and X-ray diffraction), and a finite element method was used to study the microstructure features of grain diameter, grain orientation and thermal parameters of cooling rate, thermal gradient and molten pool dimensions.
Findings
The computational tool of Ansys Additive was found efficient in reproducing the experimental effect of varying laser power, scanning speed and hatch spacing on the microstructure. In particular, the conditions for obtaining maximum densification and minimum fusion defects were consistent with the experiment, and the features of higher microhardness near the component’s surface and distribution of surface roughness were also reproduced.
Originality/value
To the best of the author’s knowledge, this paper is believed to be the first systematic attempt to use Ansys Additive to investigate the anisotropy of the 316 L SS produced by LPBF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.