In social insects, alerting nestmates to the presence of a pathogen should be critical for limiting its spread and initiating social mechanisms of defense. Here we show that subterranean termites use elevated vibratory alarm behavior to help prevent fatal fungal infections. The elevated alarm leads to elevated social hygiene. This requires that termites coalesce so that they can groom each other’s cuticular surfaces of contaminating conidial spores. Groups of 12 Reticulitermes flavipes workers varied in their response when immersed in conidia solutions of nine different strains of Metarhizium. Pathogen alarm displays of short 2–7-second bursts of rapid longitudinal oscillatory movement (LOM), observed over 12 min following a fungal challenge, were positively correlated with the time that workers spent aggregated together grooming each other. The frequency of these LOMs was inversely correlated with fatal fungal infections. The variation in fatalities appeared to be largely attributable to a differential response to Metarhizium brunneum and Metarhizium robertsii in the time spent in aggregations and the frequency of allogrooming. Isolated workers challenged with conidia did not display LOMs, which suggests that the alarm is a conditional social response. LOMs appear to help signal the presence of fungal pathogens whose virulence depends on the level of this emergency alert.
Vibrio cholerae is a Gram-negative bacterium that causes the enteric disease cholera. V. cholerae colonization of the human intestine is dependent on the expression of both virulence genes and environmental adaptation genes involved in antimicrobial resistance. The expression of virulence genes, including the genes encoding for the main virulence factors cholera toxin (CT) and the toxin coregulated pilus (TCP), are coordinately regulated by the ToxR regulon. Tripartite transport systems belonging to the ATP binding cassette, major facilitator, and Resistance-Nodulation-Division families are critical for V. cholerae pathogenesis. Transport systems belonging to these families contribute to myriad phenotypes including protein secretion, antimicrobial resistance and virulence. TolC plays a central role in bacterial physiology by functioning as the outer membrane pore protein for tripartite transport systems. Consistent with this, V. cholerae tolC was previously found to be required for MARTX toxin secretion and antimicrobial resistance. Herein we investigated the contribution of TolC to V. cholerae virulence. We documented that tolC was required for CT and TCP production in O1 El Tor V. cholerae . This phenotype was linked to repression of the critical ToxR regulon transcription factor aphA . Decreased aphA transcription correlated with increased expression of the LysR-family transcription factor leuO . Deletion of leuO restored aphA expression, and CT and TCP production, in a tolC mutant. The collective results document that tolC is required for ToxR regulon expression and further suggest that tolC may participate in a efflux-dependent feedback circuit to regulate virulence gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.