Despite considerable research interest in developing piezoelectric materials, little work has focused on the fundamental design of these materials from the ground up. Herein, we present a general, versatile method for producing tunable, flexible piezoelectric energy harvesters (PEHs) with excellent piezoelectric response. Using a poly(dimethylsiloxane) (PDMS) foam derived from a sugar template, we separate the electrical and mechanical properties of the PEH, thereby allowing us to optimize them separately. The electrical properties were tuned by varying the poling field, the polar dopant, and the dopant concentration. The mechanical properties were tuned by varying foam preparation and thus the compressive modulus. Through the careful tuning of these properties, we are able to achieve a maximum piezoelectric response of 153 pC/N, which is considerably higher than that of most other reported flexible PEHs. Combined with our previous work, we demonstrate that doping polymer foams with polar dopants is a highly general strategy and has the potential to lead to materials with considerably higher piezoelectric responses.
Multidrug efflux systems belonging to the resistance-nodulation-division (RND) superfamily are ubiquitous in Gram-negative bacteria. RND efflux systems are often associated with multiple antimicrobial resistance and also contribute to the expression of diverse bacterial phenotypes including virulence, as documented in the intestinal pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera. Transcriptomic studies with RND efflux-negative V. cholerae suggested that RND-mediated efflux was required for homeostasis, as loss of RND efflux resulted in the activation of transcriptional regulators, including multiple environmental sensing systems. In this report, we investigated six RND efflux-responsive regulatory genes for contributions to V. cholerae virulence factor production. Our data showed that the V. cholerae gene VC2714, encoding a homolog of Escherichia coli OmpR, was a virulence repressor. The expression of ompR was elevated in an RND-null mutant, and ompR deletion partially restored virulence factor production in the RND-negative background. Virulence inhibitory activity in the RND-negative background resulted from OmpR repression of the key ToxR regulon virulence activator aphB, and ompR overexpression in wild-type cells also repressed virulence through aphB. We further show that ompR expression was not altered by changes in osmolarity but instead was induced by membrane-intercalating agents that are prevalent in the host gastrointestinal tract and which are substrates of the V. cholerae RND efflux systems. Our collective results indicate that V. cholerae ompR is an aphB repressor and regulates the expression of the ToxR virulence regulon in response to novel environmental cues.
We report the construction of a tetracycline inducible expression vector that allows regulated gene expression in the enteric pathogen Vibrio cholerae. The expression vector, named pXB300, contains the tetracycline regulatory elements from Tn10, a multiple cloning site downstream of the tetA promoter and operator sequences, a ColE1 origin of replication, a β-lactamase resistance gene for positive selection, and the hok/sok addiction system for selection in the absence of antibiotic. The function of the tetracycline expression system was demonstrated by cloning lacZ under control of the tetA promoter and quantifying β-galactosidase expression in Escherichia coli and V. cholerae. The utility for pXB300 was documented by complementation of V. cholerae virulence mutants during growth under virulence inducing conditions. The results showed that pXB300 allowed high-level expression of recombinant genes with linear induction in response to the exogenous concentration of the inducer anhydrotetracycline. We further show that pXB300 was reliably maintained in V. cholerae during growth in the absence of antibiotic selection.
Cholera is an epidemic disease caused by the Gram-negative bacterium Vibrio cholerae . V. cholerae is found in aquatic ecosystems and infects people through the consumption of V. cholerae contaminated food or water. Following ingestion, V. cholerae responds to host cues to activate the expression of critical virulence genes that are under control of a hierarchical regulatory system called the ToxR regulon. The ToxR regulon is tightly regulated and is only expressed in vitro under special growth conditions referred to as AKI conditions. AKI conditions have been instrumental in elucidating V. cholerae virulence regulation, but the chemical cues within AKI medium that activate virulence gene expression are unknown. In this study, we fractionated AKI medium on a reverse phase chromatography column (RPCC) and showed that the virulence activating molecules were retained on the RPCC column, and recovered in the eluate. LC-HRMS analysis of the eluate revealed the presence of a known ToxR regulon activator, taurocholate, and other bile salts. The RPCC eluate activated the ToxR regulon when added to non-inducing media and promoted TcpP dimerization in a two-hybrid system, consistent with taurocholate being responsible for the virulence-inducing activity of AKI medium. Additional experiments using purified bile salts showed that ToxR regulon was preferentially activated in response to primary bile acids. The results of this study shed light on the chemical cues involved in V. cholerae virulence activation and suggested that V. cholerae virulence genes are modulated in response to regional-specific bile acid species in the intestine.
Vibrio cholerae is a Gram-negative bacterium that causes the enteric disease cholera. V. cholerae colonization of the human intestine is dependent on the expression of both virulence genes and environmental adaptation genes involved in antimicrobial resistance. The expression of virulence genes, including the genes encoding for the main virulence factors cholera toxin (CT) and the toxin coregulated pilus (TCP), are coordinately regulated by the ToxR regulon. Tripartite transport systems belonging to the ATP binding cassette, major facilitator, and Resistance-Nodulation-Division families are critical for V. cholerae pathogenesis. Transport systems belonging to these families contribute to myriad phenotypes including protein secretion, antimicrobial resistance and virulence. TolC plays a central role in bacterial physiology by functioning as the outer membrane pore protein for tripartite transport systems. Consistent with this, V. cholerae tolC was previously found to be required for MARTX toxin secretion and antimicrobial resistance. Herein we investigated the contribution of TolC to V. cholerae virulence. We documented that tolC was required for CT and TCP production in O1 El Tor V. cholerae . This phenotype was linked to repression of the critical ToxR regulon transcription factor aphA . Decreased aphA transcription correlated with increased expression of the LysR-family transcription factor leuO . Deletion of leuO restored aphA expression, and CT and TCP production, in a tolC mutant. The collective results document that tolC is required for ToxR regulon expression and further suggest that tolC may participate in a efflux-dependent feedback circuit to regulate virulence gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.