Background In the context of increasing global food demand, ecological intensification of agroecosystems is required to increase nutrient use efficiency in plants while decreasing fertilizer inputs. Better exploration and exploitation of soil resources is a major issue for phosphorus, given that rock phosphate ores are finite resources, which are going to be exhausted in decades from now on. Scope We review the processes governing the acquisition by plants of poorly mobile nutrients in soils, with a particular focus on processes at the root-soil interface. Rhizosphere processes are poorly accounted for in most plant nutrition models. This lack largely explains why present-day models fail at predicting the actual uptake of poorly mobile nutrients such as phosphorus under low input conditions. A first section is dedicated to biophysical processes and the spatial/temporal development of the rhizosphere. A second section concentrates on biochemical/biogeochemical processes, while a third section addresses biological/ecological processes operating in the rhizosphere. Conclusions New routes for improving soil nutrient efficiency are addressed, with a particular focus on breeding and ecological engineering options. Better mimicking natural ecosystems and exploiting plant diversity appears as an appealing way forward, on this long and winding road towards ecological intensification of agroecosystems. (Résumé d'auteur
The main objective of the present study was to investigate phosphorus (P) dynamics in the rhizosphere of durum wheat (Triticum turgidum durum L.) and common bean (Phaseolus vulgaris L.) grown in monocropping and intercropping systems with nitrate supply. Wheat and common bean were grown either alone or in association in a cropping device with a thin (1 mm) soil layer sandwiched between large root mats. Wheat intercropped with common bean exhibited a 33% increase in shoot biomass and a 22% increased root biomass, without significantly affecting common bean growth. After 12 days of culture, rhizosphere pH decreased by 1.66 and 1.13 units in monocropping system of common bean and intercropping system, respectively. Wheat increased intercropped common bean proton release by 36% compared with monocropped beans. Common bean and wheat exhibited different behaviors in rhizosphere P dynamics. Monocropped wheat decreased Resin-P, NaHCO 3 -P and NaOH-P in its rhizosphere by 24, 96 and 10%, respectively. However, NaHCO 3 -P and NaOH-P were increased by 61 and 10% in the rhizosphere of intercropping. Almost all values about P fraction in intercropping system were between those in monocropped common bean and monocropped wheat. Through taping different P fraction, different plants species possibly can alleviate competition for phosphorus in intercropping system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.