Maspin, a novel serine protease inhibitor (serpin), suppresses the growth and metastasis of breast tumor in vivo. However, the underlying molecular mechanism is unclear. In the current study, we report the ®rst evidence that endogenous maspin expression in mammary carcinoma cells MDA-MB-435 enhanced staurosporine (STS)-induced apoptosis as judged by the increased fragmentation of DNA, increased proteolytic inactivation of poly-[ADP-ribose]-polymerase (PARP), as well as the increased activation of caspase-8 and caspase-3. In parallel, recombinant maspin did not directly regulate the proteolytic activities of either caspase-3 or caspase-8 in vitro. Consistent with this result, maspin expressing normal mammary epithelial cells underwent more rapid STS-induced apoptosis as compared to breast carcinoma cells. Interestingly, maspin transfectant cells did not undergo spontaneous apoptosis in the absence of STS. Moreover, neither puri®ed maspin protein added from outside nor endogenous maspin secreted to the cell culture media sensitized cells to STS-induced apoptosis. To investigate the structural determinants of maspin in its apoptosis-sensitizing e ect, MDA-MB-435 cells were also transfected with maspin/PAI-1 and PAI-1/maspin chimeric constructs resulting from swapping the Nterminal and the C-terminal domains between maspin and PAI-1 (plasminogen activator inhibitor type 1). The resulting stable transfectant clones expressing maspin/ PAI-1 and PAI-1/maspin, respectively, did not undergo spontaneous apoptosis, and were similarly inhibited as maspin transfectant cells in motility assay. Interestingly, however, expression of both maspin/PAI-1 and PAI-1/ maspin in MDA-MB-435 cells failed to sensitize these cells to STS-induced apoptosis. Taken together, our evidence provides new insights into the complex molecular mechanisms of maspin that may suppress breast tumor progression not only at the step of invasion and motility, but also by regulating tumor cell apoptosis. The sensitizing e ect of maspin on apoptosis is to be contrasted by the pro-survival e ect of several other serpins.
BACKGROUND.Approximately 30% to 40% of all patients with osteosarcomas ultimately experience recurrence. The study investigated the hypothesis that the resistance of osteosarcoma to chemotherapy may be related to the expression of a pregnane xenobiotic receptor (PXR) variant protein and its role as the major inducer of P450 3A4 in these tumors.METHODS.Polymerase chain reaction (PCR) and Western blot analysis were used to determine PXR mRNA and protein expression, respectively. Real‐time PCR and CYP3A catalytic activity using 7‐benzyl‐trifluoromethyl coumarin (BFC) as the probe substrate were used to measure the induction of P450 3A4 or MDR1. siRNA transfections were performed for PXR and cytotoxicity determined by a colorimetric based assay or Annexin v‐Fitc staining.RESULTS.Differences were observed in the molecular size of the PXR protein expressed in sarcoma cell lines when compared with the wildtype PXR expressed in normal liver, kidney, or small intestine. A polyclonal PXR antibody raised against the N‐terminus of the wildtype PXR did not detect PXR expressed in these sarcoma cell lines. In the osteosarcoma cell lines, etoposide and doxorubicin were better inducers of P450 3A4 and MDR1 than rifampin. siRNA against PXR down‐regulated P450 3A4 expression only in the osteosarcoma cell line. Cytotoxicity assays showed that the resistance of the osteosarcoma cell lines to etoposide correlated with PXR protein expression levels and activation of P450 3A4 and could be prevented by ketoconazole.CONCLUSION.The results suggest that PXR plays a critical role in the regulation of P450 3A4 expression in osteosarcoma and that its expression and activation in these tumors may influence the effect of chemotherapeutic agents on the induction of target genes implicated in drug resistance. Cancer 2007. © 2007 American Cancer Society.
Menin is the ubiquitously expressed nuclear protein product of the MEN1 gene, which interacts with PKB/Akt in the cytoplasm to inhibit its activity. This study describes a novel insulin-dependent mechanism of menin regulation and interaction with other metabolic proteins. We show that insulin downregulated menin in a time-dependent manner via the human insulin receptor. Inhibition analysis indicated a critical role for the protein kinase Akt in regulation of menin expression and localization. Insulin-mediated decrease in menin expression was abrogated by the PI3K/Akt inhibitor LY-294002 at early time points, from 2 to 7 h. Furthermore, exposure to insulin resulted in the cytoplasmic localization of menin and increased interaction with FOXO1. Fasting followed by refeeding modulates serum insulin levels, which corresponded to an increase in menin interaction with FOXO1 in the liver. Liver-specific hemizygous deletion of menin resulted in increased expression of FOXO1 target genes, namely IGFBP-1, PGC-1α, insulin receptor, Akt, and G-6-Pase. This study provides evidence that menin expression and localization are regulated by insulin signaling and that this regulation triggers an increase in its interaction with FOXO1 via Akt with metabolic consequences.
Mutations in the MEN1 gene correlate with multiple endocrine neoplasia I (MEN1). Gastrinomas are the most malignant of the neuroendocrine tumors associated with MEN1. Because menin and JunD proteins interact, we examined whether JunD binds to and regulates the gastrin gene promoter. Both menin and JunD are ubiquitous nuclear proteins that we showed colocalize in the gastrin-expressing G cells of the mouse antrum. Transfection with a JunD expression vector alone induced endogenous gastrin mRNA in AGS human gastric cells, and the induction was blocked by menin overexpression. We mapped repression by menin to both a nonconsensus AP-1 site and proximal GC-rich elements within the human gastrin promoter. Chromatin immunoprecipitation assays, EMSAs, and DNA affinity precipitation assays documented that JunD and Sp1 proteins bind these two elements and are both targets for menin regulation. Consistent with menin forming a complex with histone deacetylases, we found that repression of gastrin gene expression by menin was reversed by trichostatin A. In conclusion, proximal DNA elements within the human gastrin gene promoter mediate interactions between JunD, which induces gastrin gene expression and menin, which suppresses JunD-mediated activation.
PurposeObstructive sleep apnea (OSA) is a highly prevalent disorder associated with increased risk for cardiovascular disease, diabetes, and other chronic conditions. Unfortunately, up to 90% of individuals with OSA remain without a diagnosis or therapy. We assess the relationship between OSA and blood biomarkers, and test the hypothesis that combinations of markers provide a characteristic OSA signature with diagnostic screening value. This validation study was conducted in an independent cohort in order to replicate findings from a prior feasibility study.Patients and methodsThis multicenter prospective study consecutively enrolled adult male subjects with clinically suspected OSA. All subjects underwent overnight sleep studies. An asymptomatic control group was also obtained. Five biomarkers were tested: glycated hemoglobin (HbA1c), C-reactive protein (CRP), uric acid, erythropoietin (EPO), and interleukin-6 (IL-6).ResultsThe study enrolled 264 subjects. The combination of HbA1c+CRP+EPO (area under the curve 0.78) was superior to the Epworth Sleepiness Scale (ESS; 0.53) and STOP-Bang (0.70) questionnaires. In non-obese subjects, the combination of biomarkers (0.75) was superior to body mass index (BMI; 0.61). Sensitivity and specificity results, respectively, were: HbA1c+CRP+EPO (81% and 60%), ESS (78% and 19%), STOP-Bang (75% and 52%), BMI (81% and 56%), and BMI in non-obese patients (81% and 38%).ConclusionWe verify our hypothesis and replicate our prior feasibility findings that OSA is associated with a characteristic signature cluster of biomarker changes in men. Concurrent elevations of HbA1c, CRP, and EPO levels should generate a high suspicion of OSA and may have utility as an OSA screening tool. Biomarker combinations correlate with OSA severity and, therefore, may assist sleep centers in identifying and triaging higher risk patients for sleep study diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.