An important economic alternative for the semi-arid region of Brazil is the goat and sheep farming. Besides milk and meat, goat/sheep skins are much appreciated in the manufacturing of fine artifacts (e.g. shoes, bags & purses, wallets, and jackets). However, due to the extensive mode of raising/breeding and the informality of slaughtering, sheep/goat farmers deliver to industry skin pieces with different types and levels of defects. Then, at the industry, specialized workers have to classify/discriminate the skin pieces according to their qualities. This handmade work is timeconsuming and extremely dependent on the experience of the employee in charge of the skin-quality discrimination. Even the same employee may produce different classifications if he/she is asked to reclassify the skin lot. Thus, in order to handle these problems, in this paper we report the first results of a computer vision based system aiming at classifying automatically the quality of goat/sheep skin pieces. For this purpose, we compare the performances of statistical and neural network classifiers using several feature extraction techniques, such as Column-Variance, Haar wavelet transform, Non-Negative Matrix Factorization (NMF) and Principal Component Analysis (PCA). The obtained results clearly indicate a better performance for the neural network classifier using the Haar wavelet transform and PCA as feature extractors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.