How to cite this paper: Sousa, P. H. F.; Nascimento, N. M. M.; Almeida, J. S.; Rebouças Filho, P. P. and Albuquerque, V.
AbstractThe eagerness and necessity to develop so-called smart applications has taken the Internet of Things (IoT) to a whole new level. Industry has been implementing services that use IoT to increase productivity as well as management systems over the past couple of years. Such services are now encroaching on wind energy, which nowadays is the most acceptable source among renewable energies for electricity generation. This work proposes an intelligent system to identify incipient faults in the electric generators of wind turbines to improve maintenance routines. Four feature extraction methods were applied to vibration signals, and different classifiers were used to predict the running status of the wind turbine. We correctly identified 94.44% of normal conditions, reducing the false positive and negative rates to 0.4% and 1.84%, respectively; a better result than other approaches already reported in the literature. Kiviluoma [29] analyzed the behavior of the power variation in different regions and demonstrated that rapid changes in local wind conditions cause power fluctuations in the
IoT system and operational costs of a wind farm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.