Eleven samples of grapes and musts used in red table wines were investigated for the occurrence of potential ochratoxin A (OTA)-producing molds. From these samples, 59 filamentous fungi and 2 yeasts were isolated. Among the 30 genera isolated, Deuteromycetes were the most frequent (70%) followed by Ascomycetes (10%). Six of the eleven grapes samples were contaminated by potentially ochratoxinogenic strains (Penicillium chrysogenum and Aspergillus carbonarius). When cultivated in vitro on solid complex media, the 14 strains of A. carbonarius produced OTA. No other species produced OTA under the same conditions. Among must samples, eight of eleven were found to be contaminated by OTA (concentrations from <10 to 461 ng/L). There is a strong correlation between the presence of ochratoxin-producing strains on grapes and OTA in musts. These findings should be connected with the OTA contamination of human blood in these areas and in France.
Lipid peroxidation is one of the main manifestations of oxidative damage and has been found to play an important role in the toxicity and carcinogenicity of many xenobiotics. In the present study, we investigated the possible induction of lipid peroxidation by aluminium in human foreskin fibroblast cultures by assaying the malondialde hyde (MDA) produced inside the cells. The MDA–thiobarbituric acid (TBA) adduct was assayed by HPLC using fluorometric quantification after extraction in n-butanol. Lactate dehydrogenase (LDH) release was used as a marker of aluminium toxicity. MDA production was significantly increased after 24 h incubation with aluminium and paralleled LDH release. Superoxide dismutase (SOD)+catalase and vitamins C and E added in the culture medium as oxygen radical and free radical scavengers were efficient in preventing MDA production by aluminium, indicating that oxidative processes are one of the main pathways whereby this metal induces cytotoxicity. The latter is also largely prevented, thus confirming the link between oxidative stress induced by aluminium and its cytotoxicity in human skin fibroblasts. Human & Experimental Toxicology (2001) 20, 477–481.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.