Cryptochrome (CRY), a photoreceptor for the circadian clock in Drosophila, binds to the clock component TIM in a light-dependent fashion and blocks its function. In mammals, genetic evidence suggests a role for CRYs within the clock, distinct from hypothetical photoreceptor functions. Mammalian CRY1 and CRY2 are here shown to act as light-independent inhibitors of CLOCK-BMAL1, the activator driving Per1 transcription. CRY1 or CRY2 (or both) showed light-independent interactions with CLOCK and BMAL1, as well as with PER1, PER2, and TIM. Thus, mammalian CRYs act as light-independent components of the circadian clock and probably regulate Per1 transcriptional cycling by contacting both the activator and its feedback inhibitors.
In human populations, cigarettes and alcohol generally serve as gateway drugs, which people use first before progressing to marijuana, cocaine or other illicit substances. To understand the biological basis of the gateway sequence of drug use, we developed an animal model in mice and focused on the effects of nicotine on subsequent responses to cocaine. We found that pretreatment of mice with nicotine increased the response to cocaine as assessed by both addiction-related behaviors and synaptic plasticity in the striatum, a brain region critical for addiction-related reward. Locomotor sensitization was increased by 98%, conditioned place preference was increased by 78%, and cocaine-induced reduction in long-term potentiation (LTP) was enhanced by 24%. The responses to cocaine were altered only when nicotine was administered first, and nicotine and cocaine were then administered concurrently. Reversing the order of drug administration was ineffective. Cocaine had no effect on nicotine induced behaviors and synaptic plasticity. Nicotine primed the response to cocaine by enhancing its ability to induce transcriptional activation of the FosB gene through inhibiting histone deacetylase, causing global histone acetylation in the striatum. We tested this conclusion further with a histone deacetylase inhibitor and found that it similarly simulated the actions of nicotine on cocaine by priming the response to cocaine, and enhancing FosB gene expression and LTP depression in the nucleus accumbens. Conversely, in a genetic mouse model of Rubinstein Taybi’s syndrome, characterized by reduced histone acetylation, the effects of cocaine on LTP were diminished. We achieved a similar effect pharmacologically by infusing a low-dose of theophylline, an activator of histone deacetylase, into the nucleus accumbens. These data from mice prompted an analysis of epidemiological data, which indicated that most cocaine users initiate cocaine use after the onset of smoking while actively smoking and that initiating cocaine use after smoking increases the risk of becoming dependent on cocaine, consistent with our data in mice. If our findings in mice apply to humans, a decrease in smoking rates in young people could also lead to a decrease in cocaine addiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.