Monocytes and macrophages are major components of the tumor microenvironment, but their contributions to human cancer are poorly understood. We used molecular profiling combined with functional assays to investigate the role of these cells in human renal cell carcinoma (RCC). Blood monocytes from RCC patients displayed a tumor-promoting transcriptional profile that supported functions like angiogenesis and invasion. Induction of this protumor phenotype required an interleukin-1 receptor (IL-1R)-dependent mechanism. Indeed, targeting of IL-1-IL-1R axis in a human RCC xenograft model abrogated the protumor phenotype of tumor-associated macrophages (TAMs) and reduced tumor growth in vivo. Supporting this, meta-analysis of gene expression from human RCC tumors showed IL1B expression to correlate with myelomonocytic markers, protumor genes, and tumor staging. Analyzing RCC patient tumors confirmed the protumor phenotype of TAMs. These data provide direct evidence for a tumor-promoting role of monocytes and macrophages in human cancer and indicate IL-1-IL-1R as a possible therapeutic target.
Cystoscopy is considered the gold standard for the clinical diagnosis of human bladder cancer (BC). As cystoscopy is expensive and invasive, it may compromise patients' compliance and account for the failure in detecting recurrent BC in some patients. In this paper, we investigated the role of urinary metabonomics in the diagnosis of human BC. Gas chromatography/time-of-flight mass spectrometry was applied for the urinary metabolic profiling of 24 BC patients and 51 non-BC controls. The acquired data were analyzed using multivariate principal component analysis followed by orthogonal partial least-squares discriminant analysis (OPLS-DA). Model validity was verified using permutation tests and receiver operating characteristic (ROC) analysis. BC patients were clearly distinguished from non-BC subjects based on their global urinary metabolic profiles (OPLS-DA, 4 latent variables, R(2)X = 0.420, R(2)Y = 0.912 and Q(2) (cumulative) = 0.245; ROC AUC of 0.90; 15 marker metabolites). One-hundred percent sensitivity in detecting BC was observed using urinary metabonomics versus 33% sensitivity achieved by urinary cytology. Additionally, urinary metabonomics exhibited potential in the staging and grading of bladder tumors. In summary, urinary metabonomics is amenable for the noninvasive diagnosis of human BC.
Indwelling medical devices such as catheters are a ubiquitous and indispensable component in modern medical practice for improving therapeutic outcomes for patients. Yet at the same time, they can be a cause of healthcare-associated infections contributing to patient morbidity and mortality, and healthcare costs. Other surface-related complications can also arise from interactions of the catheter with biological components in the in vivo environment. This review summarizes the progress made in the development of antimicrobial surfaces, and the application of surface modification strategies to three important classes of catheters: urinary catheters, intravascular catheters and peritoneal dialysis catheters.The review also provides a perspective on the challenges in translating favorable developments from in vitro studies into similar clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.