Hyper-heuristics comprise a set of approaches that are motivated (at least in part) by the goal of automating the design of heuristic methods to solve hard computational search problems. An underlying strategic research challenge is to develop more generally applicable search methodologies. The term hyper-heuristic is relatively new; it was first used in 2000 to describe heuristics to choose heuristics in the context of combinatorial optimisation. However, the idea of automating the design of heuristics is not new; it can be traced back to the 1960s. The definition of hyper-heuristics has been recently extended to refer to a search method or learning mechanism for selecting or generating heuristics to solve computational search problems. Two main hyper-heuristic categories can be considered: heuristic selection and heuristic generation. The distinguishing feature of hyper-heuristics is that they operate on a search space of heuristics (or heuristic components) rather than directly on the search space of solutions to the underlying problem that is being addressed. This paper presents a critical discussion of the scientific literature on hyper-heuristics including their origin and intellectual roots, a detailed account of the main types of approaches, and an overview of some related areas. Current research trends and directions for future research are also discussed.
Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. The need for quality software solutions is acute for a number of reasons. In particular, it is very important to efficiently utilise time and effort, to evenly balance the workload among people and to attempt to satisfy personnel preferences. A high quality roster can lead to a more contented and thus more effective workforce.In this review, we discuss nurse rostering within the global personnel scheduling problem in healthcare. We begin by briefly discussing the review and overview papers that have appeared in the literature and by noting the role that nurse rostering plays within the wider context of longer term hospital personnel planning. The main body of the paper describes and critically evaluates solution approaches which span the interdisciplinary spectrum from operations research techniques to artificial intelligence methods. We conclude by drawing on the strengths and weaknesses of the literature to outline the key issues that need addressing in future nurse rostering research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.