Extracellular electron transfer (EET) – the process by which microorganisms transfer electrons across their membrane(s) to/from solid-phase materials – has implications for a wide range of biogeochemically important processes in marine environments. Though EET is thought to play an important role in the oxidation of inorganic minerals by lithotrophic organisms, the mechanisms involved in the oxidation of solid particles are poorly understood. To explore the genetic basis of oxidative EET, we utilized genomic analyses and transposon insertion mutagenesis screens (Tn-seq) in the metabolically flexible, lithotrophic Alphaproteobacterium Thioclava electrotropha ElOx9T. The finished genome of this strain is 4.3 MB, and consists of 4,139 predicted ORFs, 54 contain heme binding motifs, and 33 of those 54 are predicted to localize to the cell envelope or have unknown localizations. To begin to understand the genetic basis of oxidative EET in ElOx9T, we constructed a transposon mutant library in semi-rich media which was comprised of >91,000 individual mutants encompassing >69,000 unique TA dinucleotide insertion sites. The library was subjected to heterotrophic growth on minimal media with acetate and autotrophic oxidative EET conditions on indium tin oxide coated glass electrodes poised at –278 mV vs. SHE or un-poised in an open circuit condition. We identified 528 genes classified as essential under these growth conditions. With respect to electrochemical conditions, 25 genes were essential under oxidative EET conditions, and 29 genes were essential in both the open circuit control and oxidative EET conditions. Though many of the genes identified under electrochemical conditions are predicted to be localized in the cytoplasm and lack heme binding motifs and/or homology to known EET proteins, we identified several hypothetical proteins and poorly characterized oxidoreductases that implicate a novel mechanism(s) for EET that warrants further study. Our results provide a starting point to explore the genetic basis of novel oxidative EET in this marine sediment microbe.
Extracellular electron transfer (EET), the process that allows microbes to exchange electrons in a redox capacity with solid interfaces such as minerals or electrodes, has been predominantly described in microbes that use iron during respiration. In this work, we characterize the physiology, genome, and electrochemical properties of two obligately heterotrophic marine microbes that were previously isolated from marine sediment cathode enrichments. Phylogenetic analysis of isolate 16S rRNA genes showed two strains, SN11 and FeN1, belonging to the genus Idiomarina. Strain SN11 was found to be nearly identical to I. loihiensis L2-TRT, and strain FeN1 was most closely related to I. maritima 908087T. Each strain had a relatively small genome (~2.8–2.9 MB). Phenotypic similarities among FeN1, SN11, and the studied strains include being Gram-negative, motile, catalase- and oxidase-positive, and rod-shaped. Physiologically, all strains appeared to exclusively use amino acids as a primary carbon source for growth. This was consistent with genomic observations. Each strain contained 17 to 22 proteins with heme-binding motifs. None of these were predicted to be extracellular, although seven were of unknown localization and lacked functional annotation beyond cytochrome. Despite the lack of homology to known EET pathways, both FeN1 and SN11 were capable of sustained electron uptake over time in an electrochemical system linked to respiration. Given the association of these Idiomarina strains with electro-active biofilms in the environment and their lack of autotrophic capabilities, we predict that EET is used exclusively for respiration in these microbes.
We report the complete, closed, circular genome of Halomonas sp. strain FeN2, a metabolically versatile electrotroph that was isolated from Catalina Harbor sediments. The 4.8-Mb genome contains 4,286 protein-coding genes and has complete glycolytic, tricarboxylic acid, glyoxylate, pentose phosphate, and reductive pentose phosphate pathways. FeN2 also contains genes for aerobic and anaerobic (denitrification) respiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.