-Thermal modification at relatively high temperatures (ranging from 150 to 260 • C) is an effective method to improve the dimensional stability and resistance against fungal attack. This study was performed to investigate the impact of heat treatment on the mechanical properties of wood. An industrially-used two-stage heat treatment method under relative mild conditions (< 200 • C) was used to treat the boards. Heat treatment revealed a clear effect on the mechanical properties of softwood species. The tensile strength parallel to the grain showed a rather large decrease, whereas the compressive strength parallel to the fibre increased after heat treatment. The bending strength, which is a combination of the tensile stress, compressive stress and shear stress, was lower after heat treatment. This decrease was less than the decrease of only the tensile strength. The impact strength showed a rather large decrease after heat treatment. An increase of the modulus of elasticity during the bending test has been noticed after heat treatment. Changes and/or modifications of the main wood components appear to be involved in the effects of heat treatment on the mechanical properties. The possible effect of degradation and modification of hemicelluloses, degradation and/or crystallization of amorphous cellulose, and polycondensation reactions of lignin on the mechanical properties of heat treated wood have been discussed. The effect of natural defects, such as knots, resin pockets, abnormal slope of grain and reaction wood, on the strength properties of wood appeared to be affected by heat treatment. Nevertheless, heat treated timber shows potential for use in constructions, but it is important to carefully consider the stresses that occur in a construction and some practical consequences when heat treated timber is used. thermal modification / mechanical properties / cellulose / hemicelluloses / lignin Résumé -Propriétés mécaniques de bois résineux modifiés par traitement thermique en relation avec la constitution en polymères ligneux structuraux. La modification thermique du bois à des températures relativement élevées (entre 150 et 260 • C) présente une méthode efficace pour améliorer la stabilité dimensionnelle et la résistance aux attaques de champignons. Ce travail porte sur les effets du traitement thermique sur les propriétés mécaniques du bois. Les planches ont été soumises à un traitement thermique à des températures relativement modérées (< 200 • C) selon un procédé industriel en deux phases. Il s'est avéré qu'un tel traitement influe nettement sur les propriétés mécaniques des bois résineux. La résistance à la traction dans la direction parallèle au fil du bois est diminuée de manière assez importante, tandis que, dans la même direction, la résistance à la compression est augmentée. La résistance au fléchissement, qui intègre la résistance aux efforts de traction, de compression et de cisaillement, était plus réduite après le traitement thermique. Cette diminution était moins importante que celle de la...
Heat treatment of wood at relatively high temperatures (in the range of 150-280 degrees C) is an effective method to improve biological durability of wood. This study was performed to investigate the effect of heat treatment process optimisation on the resistance against fungal attack, including basidiomycetes, molds and blue stain fungi. An industrially used two-stage heat treatment method under relatively mild conditions (< 200 degrees C) was used to treat the boards. Heat treatment of radiata pine sapwood revealed a clear improvement of the resistance against the brown rot fungi Coniophora puteana and Poria placenta. Increasing process temperature and/or effective process time during the first process stage, the hydro thermolysis, appeared to affect the resistance against C. puteana attack, but the effect on the resistance against P. placenta was rather limited. Heat treated radiata pine showed a limited resistance against the white rot fungus Coriolus versicolor and process variations during the hydro thermolysis stage appeared not to affect this resistance. A clear difference between the resistance of heat treated Scots pine sapwood and heartwood against fungal attack is observed. Scots pine heartwood showed a higher resistance against C. puteana and P. placenta but also against the white rot fungus C. versicolor. Similar results were obtained when heat treated birch was exposed to brown and white rot fungi. Heat treatment showed an improved resistance against C. puteana attack, especially at higher temperatures during the hydro thermolysis stage. A clear improvement of the durability was also observed after exposure to the white rot fungus C. versicolor and especially Stereum hirsutum. Increasing the process temperature or process time during the hydro thermolysis stage appeared to have a limited effect on the resistance against C. versicolor attack. Heat treated radiata pine and Norway spruce were still susceptible to mold growth on the wood surface, probably due to the formation of hemicelluloses degradation products (e.g. sugars) during heat treatment. Remarkable is the absence of blue stain fungi on heat treated wood specimen, also because the abandant blue stain fungi were observed on untreated specimen. Molecular reasons for the resistance of heat treated wood against fungal attack are discussed in detail contributing to a better understanding of heat treatment methods
Heat treatment of wood is an effective method to improve the dimensional stability and durability against biodegradation. Optimisation of a two-stage heat treatment process at relatively mild conditions (<200°C) and its effect on the anatomical structure of hardwoods were investigated by means of a light and scanning electron microscopic analysis. Hardwood species such as beech and poplar, were predominantly sensitive to collaps of the vessels and some deformation of the libriform fibres directly near the vessels. In treated beech and birch radial cracks were observed near the rays. Optimisation of the heat treatment process conditions including the application of a steam hydro thermolysis stage reduced such damages to a minimum. Broken cell walls perpendicular to the fibre direction resulting in transverse ruptures has been noticed in heat treated hardwood species. This contributes to abrupt fractures of treated wood as observed in bending tests which can lead to considerably different failure behavior after impact of mechanical stress. In some treated hardwood species maceration (small cracks between tracheids) was noticed after heat treatment. Heat treatment did not reveal damage to the ray parenchyma pit membranes, bordered pits and large window pit membranes; and the margo fibrils appeared without damage.
This study investigated the impact of an industrially used two-stage heat-treatment method on the mechanical properties of full construction timber. Bending tests of full-size Norway spruce posts demonstrated changes due to heat treatment, such as a decrease in the density and bending strength, as well as an increase in the modulus of elasticity (MOE). The variability in bending strength and MOE appeared to be higher for treated posts and as a result the 5% values decreased, especially for the bending strength. The MOE was dependent on density for both treated and untreated posts, but this was not so for the bending strength. There appeared to be a relationship between the bending strength and the MOE, although it was rather weak, especially for treated posts. It was difficult to correlate the occurrence of natural defects in treated Norway spruce posts with an effect on the mechanical properties. Only a combination of several defects, such as large knots, enclosed pith and a deviating slope of grain, appeared to decrease the bending strength and MOE of treated posts, at least more than for untreated posts. The effect of a three year period of outdoor exposure on the strength properties of heat-treated terrace planking was limited. In particular, for the 5% value low strength range, where wood defects strongly determine the mechanical properties of wood, a three-year outdoor exposure did not change the bending strength or MOE of heat-treated wood
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.