Olive tree cultivation is currently a dominant agriculture activity in the Mediterranean basin, where the increasing impact of climate change coupled with the inefficient management of olive groves is negatively affecting olive oil production and quality in some marginal areas. In this context, satellite imagery may help to monitor crop growth under different environmental conditions, thus providing useful information for optimizing olive grove management and final production. However, the spatial resolution of freely-available satellite products is not yet adequate to estimate plant biophysical parameters in complex agroecosystems such as olive groves, where both olive trees and grass cover contribute to the vegetation indices (VIs) signal at pixel scale. The aim of this study is therefore to test a disentangling procedure to partition the VIs signal among the different components of the agroecosystem to use this information for the monitoring of olive growth processes during the season. Specifically, five VIs (GEMI, MCARI2, NDVI, OSAVI, MCARI2/OSAVI) as recorded by Sentinel-2 at a spatial resolution of 10 m over five olive groves in the Montalbano area (Tuscany, Central Italy), were tested as a proxy for olive tree intercepted radiation. The olive tree volume per pixel was initially used to linearly rescale the VIs signal into the relevant value for the grass cover and olive trees. The models, describing the relationship between rescaled VIs and observed fraction of Photosynthetically Active Radiation (fPAR), were fitted and then validated against independent datasets. While in the calibration phase, a greater robustness at predicting fPAR was obtained using NDVI (r = 0.96 and RRMSE = 9.86), the validation results demonstrating that GEMI and MCARI2/OSAVI provided the highest performances (GEMI: r = 0.89 and RRMSE = 21.71; MCARI2/OSAVI: r = 0.87 and RRMSE = 25.50), in contrast to MCARI2 that provided the lowest (r = 0.67 and RRMSE = 36.78). These results may be related to the VIs’ intrinsic features (e.g., lower sensitivity to atmosphere and background effects), which make some of these indices, compared to others, less sensitive to saturation effects by improving fPAR estimation (e.g., GEMI vs. NDVI). On this basis, this study evidenced the need to improve the current methodologies to reduce inter-row effects and select appropriate VIs for fPAR estimation, especially in complex agroecosystems where inter-row grass growth may affect remote sensed-derived VIs signal at an inadequate pixel resolution.
Current vegetation of alpine grasslands has been shaped by the combination of natural ecological factors (such as climate, soil, topography) and human activities, mainly represented by animal grazing and agricultural practices. An assessment of these factors can explain the present composition of plant communities and help to evaluate the future development of rangeland vegetation. Nowadays, the analysis of the botanical composition of grasslands is of a major importance in order to propose appropriate management plans for the sustainable exploitation of pastoral resources and their future conservation. The main purpose of this work was to assess the relevance of ecological and management factors in alpine grasslands in an area located in eastern Italy, currently used for extensive grazing, and to describe the main factors that affect the characteristics of pasture types. To this aim, about 900 ha of alpine grasslands were surveyed in Val Visdende (northern Veneto, province of Belluno, Italy) by means of 189 linear transects. Some environmental variables (altitude, slope, aspect) and factors related to management (pastoral value, animal excreta, distance from night barns) were collected for each botanical transect. Landolt indicators were calculated in order to evaluate the ecological space occupied by each type. This assessment made it possible to identify the most relevant grassland communities (namely nutrient poor, shrub encroached, nutrient rich and humid pastures) occurring in the studied area, the effectiveness of ecological indicators to describe and to differentiate vegetation groups and the effect of animal management and ecological factors in the discrimination of grassland types.
The use of very long spatial datasets from satellites has opened up numerous opportunities, including the monitoring of vegetation phenology over the course of time. Considering the importance of grassland systems and the influence of climate change on their phenology, the specific objectives of this study are: (a) to identify a methodology for a reliable estimation of grassland phenological dates from a satellite vegetation index (i.e., kernel normalized difference vegetation index, kNDVI) and (b) to quantify the changes that have occurred over the period 2001–2021 in a representative dataset of European grasslands and assess the extent of climate change impacts. In order to identify the best methodological approach for estimating the start (SOS), peak (POS) and end (EOS) of the growing season from the satellite, we compared dates extracted from the MODIS-kNDVI annual trajectories with different combinations of fitting models (FMs) and extraction methods (EM), with those extracted from the gross primary productivity (GPP) measured from eddy covariance flux towers in specific grasslands. SOS and POS were effectively identified with various FM×EM approaches, whereas satellite-EOS did not obtain sufficiently reliable estimates and was excluded from the trend analysis. The methodological indications (i.e., FM×EM selection) were then used to calculate the SOS and POS for 31 grassland sites in Europe from MODIS-kNDVI during the period 2001–2021. SOS tended towards an anticipation at the majority of sites (83.9%), with an average advance at significant sites of 0.76 days year−1. For POS, the trend was also towards advancement, although the results are less homogeneous (67.7% of sites with advancement), and with a less marked advance at significant sites (0.56 days year−1). From the analyses carried out, the SOS and POS of several sites were influenced by the winter and spring temperatures, which recorded rises during the period 2001–2021. Contrasting results were recorded for the SOS-POS duration, which did not show a clear trend towards lengthening or shortening. Considering latitude and altitude, the results highlighted that the greatest changes in terms of SOS and POS anticipation were recorded for sites at higher latitudes and lower altitudes.
Future climate change is expected to significantly alter the growth of vegetation in grassland systems, in terms of length of the growing season, forage production, and climate-altering gas emissions. The main objective of this work was, therefore, to simulate the future impacts of foreseen climate change in the context of two pastoral systems in the central Italian Apennines and test different adaptation strategies to cope with these changes. The PaSim simulation model was, therefore, used for this purpose. After calibration by comparison with observed data of aboveground biomass (AGB) and leaf area index (LAI), simulations were able to produce various future outputs, such as length of growing season, AGB, and greenhouse gas (GHG) emissions, for two time windows (i.e., 2011–2040 and 2041–2070) using 14 global climate models (GCMs) for the generation of future climate data, according to RCP (Representative Concentration Pathways) 4.5 and 8.5 scenarios under business-as-usual management (BaU). As a result of increasing temperatures, the fertilizing effect of CO2, and a similar trend in water content between present and future, simulations showed a lengthening of the season (i.e., mean increase: +8.5 and 14 days under RCP4.5 and RCP8.5, respectively, for the period 2011–2040, +19 and 31.5 days under RCP4.5 and RCP8.5, respectively, for the period 2041–2070) and a rise in forage production (i.e., mean biomass peak increase of the two test sites under BaU: +53.7% and 62.75% for RCP4.5. and RCP8.5, respectively, in the 2011–2040 period, +115.3% and 176.9% in RCP4.5 and RCP8.5 in 2041–2070, respectively,). Subsequently, three different alternative management strategies were tested: a 20% rise in animal stocking rate (+20 GI), a 15% increase in grazing length (+15 GL), and a combination of these two management factors (+20 GI×15 GL). Simulation results on alternative management strategies suggest that the favorable conditions for forage production could support the increase in animal stocking rate and grazing length of alternative management strategies (i.e., +20 GI, +15 GL, +20 GI×15 GL). Under future projections, net ecosystem exchange (NEE) and nitrogen oxide (N2O) emissions decreased, whereas methane (CH4) rose. The simulated GHG future changes varied in magnitude according to the different adaptation strategies tested. The development and assessment of adaptation strategies for extensive pastures of the Central Apennines provide a basis for appropriate agricultural policy and optimal land management in response to the ongoing climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.