Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting.
IntroductionParkinson's disease (PD) patients frequently engage in rehabilitation to ameliorate symptoms. During the Coronavirus disease 2019 (COVID-19) pandemic, access to rehabilitation programs has been markedly limited, consequently, telerehabilitation gained popularity. In this prospective, open-label, and pilot study, we aimed to investigate feasibility, safety, and efficacy of telerehabilitation in mild-to-moderate PD patients.Materials and MethodsTwenty-three PD patients, with Hoehn and Yahr stage <3, without gait disturbances or dementia and capable of using the televisit platform, were recruited for a 5-week telerehabilitation program, consisting of 1 remote visit with a therapist and a minimum of two sessions of >30-min of self-conducted exercises per week. Patients received video tutorials of exercises and were asked to keep a diary of sessions. At baseline (T0), at the end of the intervention (T1), and 1 month after the end of treatment (T2), patients were remotely assessed with MDS-UPDRS part I-III, PDQ-39, Functional Independence Measure (FIM), and Frontal Assessment Battery scales, respectively. Acceptable compliance to the program was defined as >60% matching of frequency and duration of sessions, whereas optimal compliance was set at >80% matching.ResultsThe dropout rate was 0%. Over 85% of patients reached acceptable adherence cut-off and around 70% reached optimal one. No adverse events were reported during sessions. The repeated measure analysis of variance (rANOVA) showed a significant effect of factor “time” for MDS-UPDRS-III (p < 0.0001) with a mean reduction of 4.217 points between T0 and T1 and return to baseline at T2. No significant effect was found for other outcome measures.ConclusionOur findings demonstrate that telerehabilitation is safe, feasible, and effective on motor symptoms in mild-to-moderate PD patients.
Wearable technology is attracting most attention in healthcare for the acquisition of physiological signals. We propose a stand-alone wearable surface ElectroMyoGraphy (sEMG) system for monitoring the muscle activity in real time. With respect to other wearable sEMG devices, the proposed system includes circuits for detecting the muscle activation potentials and it embeds the complete real-time data processing, without using any external device. The system is optimized with respect to power consumption, with a measured battery life that allows for monitoring the activity during the day. Thanks to its compactness and energy autonomy, it can be used outdoor and it provides a pathway to valuable diagnostic data sets for patients during their own day-life. Our system has performances that are comparable to state-of-art wired equipment in the detection of muscle contractions with the advantage of being wearable, compact, and ubiquitous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.