In cement production, direct measurements of thermal and chemical variables are often unfeasible as a consequence of aggressive environments, moving parts and physical inaccessibility, and therefore prediction models are essential tools in these types of industrial applications. This article addresses the problem of the numerical prediction of the CaCO 3 calcination process, which is the first and the most energy expensive process in clinker production. This study was conducted using the Extended Discrete Element Method (XDEM), a framework which allows a Eulerian approach for the gas phase to be combined with a Lagrange one for the powder phase. A detailed validation of the numerical model was performed by comparison to non-isothermal TG curves for mass loss during the CaCO 3 decarbonation process. The complex three-dimensional predictions for solid and gas phases are believed to represent a first step towards a new insight into the cement production process. Thus, the high accuracy and detailed description of the problem addressed, serve as a basis to assess the uncertainty of more simplified models such as those used in soft sensors.
Abrasive waterjet cutting is a competitive manufacturing technology in the aerospace, defense and automotive industries. End-user requirements are currently pushing machine builders to improve the automation of their processes, in an effort to reduce costs and downtimes, as well as increase robustness and stability. On this regard, the waterjet focuser is a critical component, as its fast wear progression requires constant human supervision, for promptly detecting detrimental effects on the cutting performance. This paper describes an innovative approach for in-line monitoring the wear progression of a waterjet focuser, by means of an accelerometer installed on its tip. This result is allowed by two separate studies of the focuser, of which the first investigates the sensitivity of its first mode frequency to the wear progression, whilst the second demonstrates the possibility of tracking said frequency from the in-line vibration signal delivered by the accelerometer, during operation. The presented setup makes use of low-cost sensing hardware that can be easily retrofitted into the design of waterjet focusers. The information delivered is expected to tackle end-user requirements for improved process automation.
Thermochemical phenomena involved in cement kilns are still not well understood because of their complexity, besides technical difficulties in achieving direct measurements of critical process variables. This article addresses the problem of their comprehensive numerical prediction. The presented numerical model exploits Computational Fluid Dynamics and Finite Difference Method approaches for solving the gas domain and the rotating wall, respectively. The description of the thermochemical conversion and movement of the powder particles is addressed with a Lagrangian approach. Coupling between gas, particles and the rotating wall includes momentum, heat and mass transfer. Three-dimensional numerical predictions for a full-size cement kiln are presented and they show agreement with experimental data and benchmark literature. The quality and detail of the results are believed to provide a new insight into the functioning of a cement kiln. Attention is paid to the computational burden of the model and a methodology is presented for reducing the time-to-solution and paving the way for its exploitation in quasireal-time, indirect monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.