In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e. the neuroscience-based notion of soft synergies. A discussion of several possible actuation schemes shows that a straightforward implementation of the soft synergy idea in an effective design is not trivial. The approach proposed in this paper, called adaptive synergy, rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive synergy is discussed. This approach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the synthesis method of adaptive synergies, the Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses one actuator to activate its adaptive synergy. Of particular relevance in its design is the very soft and safe, yet powerful and extremely robust structure, obtained through the use of innovative articulations and ligaments replacing conventional joint design. The design and implementation of the prototype hand are shown and its effectiveness demonstrated through grasping experiments, reported also in the multimedia extension 1.
One of the motivations behind the development of humanoid robots is the will to comply with, and fruitfully integrate in the human environment, a world forged by humans for humans, where the importance of the hand shape dominates prominently.This paper presents the novel hand under-actuation framework which goes under the name of synergies. In particular two incarnations of this concept are considered, soft synergies and adaptive synergies. They are presented and their substantial equivalence is demonstrated.After this, it presents the first implementation of THE UNIPI-hand, a prototype which conciliates the idea of adaptive synergies for actuation with an high degree of integration, in a humanoid shape. The hand is validated experimentally through some grasps and measurements. Results are reported also in the attached video.
Despite some prematurely optimistic claims, the ability of robots to grasp general objects in unstructured environments still remains far behind that of humans. This is not solely caused by differences in the mechanics of hands: indeed, we show that human use of a simple robot hand (the Pisa/IIT SoftHand) can afford capabilities that are comparable to natural grasping. It is through the observation of such human-directed robot hand operations that we realized how fundamental in everyday grasping and manipulation is the role of hand compliance, which is used to adapt to the shape of surrounding objects. Objects and environmental constraints are in turn used to functionally shape the hand, going beyond its nominal kinematic limits by exploiting structural softness.In this paper, we set out to study grasp planning for hands that are simple -in the sense of low number of actuated degrees of freedom (one for the Pisa/IIT SoftHand) -but are soft, i.e. continuously deformable in an infinity of possible shapes through interaction with objects. After general considerations on the change of paradigm in grasp planning that this setting brings about with respect to classical rigid multi-dof grasp planning, we present a procedure to extract grasp affordances for the Pisa/IIT SoftHand through physically accurate numerical simulations. The selected grasps are then successfully tested in an experimental scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.