Soft robots are one of the most significant recent evolutions in robotics. They rely on compliant physical structures purposefully designed to embody desired characteristics. Since their introduction, they have shown remarkable applicability in overcoming their rigid counterparts in such areas as interaction with humans, adaptability, energy efficiency, and maximization of peak performance. Nonetheless, we believe that research on novel soft robot applications is still slowed by the difficulty in obtaining or developing a working soft robot structure to explore novel applications
Despite some prematurely optimistic claims, the ability of robots to grasp general objects in unstructured environments still remains far behind that of humans. This is not solely caused by differences in the mechanics of hands: indeed, we show that human use of a simple robot hand (the Pisa/IIT SoftHand) can afford capabilities that are comparable to natural grasping. It is through the observation of such human-directed robot hand operations that we realized how fundamental in everyday grasping and manipulation is the role of hand compliance, which is used to adapt to the shape of surrounding objects. Objects and environmental constraints are in turn used to functionally shape the hand, going beyond its nominal kinematic limits by exploiting structural softness.In this paper, we set out to study grasp planning for hands that are simple -in the sense of low number of actuated degrees of freedom (one for the Pisa/IIT SoftHand) -but are soft, i.e. continuously deformable in an infinity of possible shapes through interaction with objects. After general considerations on the change of paradigm in grasp planning that this setting brings about with respect to classical rigid multi-dof grasp planning, we present a procedure to extract grasp affordances for the Pisa/IIT SoftHand through physically accurate numerical simulations. The selected grasps are then successfully tested in an experimental scenario.
This article discusses the scientifically and industrially important problem of automating the process of unloading goods from standard shipping containers. We outline some of the challenges barring further adoption of robotic solutions to this problem: ranging from handling a vast variety of shapes, sizes, weights, appearance and packing arrangement of the goods, through hard demands on unloading speed and reliability, to ensuring fragile goods are not damaged. We propose a modular and reconfigurable software framework in an attempt at efficiently addressing some of these challenges. We outline the general framework design, as well as the basic functionality of the core modules developed and present two instantiations of the software system on two different fully integrated demonstrators. While one is coping with an industrial scenario, namely the automated unloading of coffee sacks, with an already economically interesting performance, the other scenario is used to demonstrate the capabilities of our scientific and technological developments in the context of medium-to long-term prospects of automation in logistics. We performed evaluations which allow us to summarize several important lessons learned and to identify future directions of research on autonomous robots for handling of goods in logistics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.