The minimization of tool switches problem (MTSP) seeks a sequence to process a set of jobs so that the number of tool switches required is minimized. The MTSP is well known to be NP-hard. This paper presents a new hybrid heuristic based on the Biased Random Key Genetic Algorithm (BRKGA) and the Clustering Search (CS). The main idea of CS is to identify promising regions of the search space by generating solutions with a metaheuristic, such as BRKGA, and clustering them to be further explored with local search heuristics. The distinctive feature of the proposed method is to simplify this clustering process. Computational results for the MTSP considering instances available in the literature are presented to demonstrate the efficacy of the CS with BRKGA.
No problema de minimização de troca de ferramentas procura-se por uma sequência para processar um conjunto de tarefas de modo que o número requerido de trocas de ferramentas seja o menor possível. Neste trabalho propõe-se um algoritmo para resolver este problema baseado em um ordenamento parcial das tarefas. Uma sequência ótima é obtida expandindo-se as sequências parciais enumeradas. Testes computacionais são apresentados.
O problema de p-medianas consiste em decidir onde localizar p centros em uma rede composta por vértices e arestas, de forma a minimizar a soma de todas as distâncias de cada vértice ao centro mais próximo. Em alguns casos, quando uma demanda estiver associada a cada vértice, pode haver restrições na capacidade de atendimento dos centros (problema de pmedianas com restrições de capacidade). Modelos de localização de facilidades têm sido propostos como ferramentas de auxílio à decisão, principalmente quando é possível usar Sistemas de Informações Geográficas (SIGs) na coleta e análise dos dados dos problemas. Apresentamos neste trabalho um relato da integração de modelos de p-medianas aos SIGs ArcView, da ESRI, e SPRING, um sistema desenvolvido no INPE. O código que foi integrado a estes SIGs implementa uma abordagem recente da heurística Lagrangiana/ surrogate, onde a viabilização da solução dual é feita através de uma heurística de localização-alocação alternada. O trabalho apresenta alguns testes computacionais usando dados do município de São José dos Campos, com tamanhos variando até o máximo de 3280 vértices e 1141 centros, para o caso sem restrições de capacidade.
Abstract:The p-median problem is the problem of locating p facilities (medians) on a network so as to minimize the sum of all the distances from each demand point to its nearest facility. A successful approach to approximately solve this problem is the use of Lagrangean heuristics, based upon Lagrangean relaxation and subgradient optimization. The Lagrangean/surrogate is an alternative relaxation proposed recently to correct the erratic behavior of subgradient like methods employed to solve the Lagrangean dual. We propose in this paper Lagrangean/surrogate heuristics to p-median problems. Lagrangean and surrogate relaxations are combined relaxing in the surrogate way the assignment constraints in the p-median formulation. Then, the Lagrangean relaxation of the surrogate constraint is obtained and approximately optimized (one-dimensional dual). Lagrangean/surrogate relaxations are very stable (low oscillating) and reach the same good results of Lagrangean (alone) heuristics in less computational times. Two primal heuristics was tested, an interchange heuristic and a location-allocation based heuristic. The paper presents several computational tests which have been conducted with problems from the literature, a set of instances presenting large duality gaps, a set of time consuming instances and a large scale instance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.