Unique blade force measurements on an open site straight-bladed vertical axis wind turbine have been performed. This paper presents a method for measuring the tangential and normal forces on a 12-kW vertical axis wind turbine prototype with a three-bladed H-rotor. Four single-axis load cells were installed in-between the hub and the support arms on one of the blades. The experimental setup, the measurement principle, together with the necessary control and measurement system are described. The maximum errors of the forces and accompanying weather data that can be obtained with the system are carefully estimated. Measured forces from the four load cells are presented, as well as the normal and tangential forces derived from them and a comparison with theoretical data. The measured torque and bending moment are also provided. The influence of the load cells on the turbine dynamics has also been evaluated. For the aerodynamic normal force, the system provides periodic data in agreement with simulations. Unexpected mechanical oscillations are present in the tangential force, introduced by the turbine dynamics. The measurement errors are of an acceptable size and often depend on the measured variable. Equations are presented for the calculation of measurement errors.
Abstract:The complex unsteady aerodynamics of vertical axis wind turbines (VAWT) poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman-Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman-Beddoes model outperforms the Gormont model for all tested conditions.
The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs). Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.
This study is on the straight bladed vertical axis turbines, which can be utilized for both wind and marine current energy. Vertical axis turbines have the potential of lower installation and maintenance cost. However, complex unsteady fluid mechanics of these turbines imposes significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions, and it is in the focus of the study. The dynamic stall effects are very important for vertical axis turbines, since they are usually passively controlled through the dynamic stall. A free vortex model is used to calculated unsteady attached flow, while the separated flow is handled by the dynamic stall model. This is compared to the model based solely on the Leishman-Beddoes algorithm. The results are assessed against the measured data on pitching airfoils. A comparison of force coefficients between the simulations and experiments is done at the conditions similar to the conditions of H-rotor type vertical axis turbines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.