Among children and adults with sickle cell anemia, the median number of pain crises over 48 weeks was lower among those who received oral therapy with l-glutamine, administered alone or with hydroxyurea, than among those who received placebo, with or without hydroxyurea. (Funded by Emmaus Medical; ClinicalTrials.gov number, NCT01179217 .).
We investigated the anti-asparaginase antibody (Ab) and asparaginase enzymatic activity in the sera of 1,001 patients (CCG-1961) with high-risk acute lymphoblastic leukemia (HR-ALL). Patients received nine doses of native Escherichia coli asparaginase during induction. Half of rapid early responders (RER) were randomly assigned to standard intensity arms and continued to receive native asparaginase. The other RER patients and all slow early responders received 6 or 10 doses of PEG-asparaginase. Serum samples (n = 3,193) were assayed for determination of asparaginase Ab titers and enzymatic activity. Three hundred ninety of 1,001 patients (39%) had no elevation of Ab among multiple evaluations-that is, were Ab-negative (<1.1 over negative control)-and 611 patients (61%) had an elevated Ab titer (>1.1). Among these 611 patients, 447 had no measurable asparaginase activity during therapy. Patients who were Ab-positive but had no clinical allergies continued to receive E. coli asparaginase, the activity of which declined precipitately. No detectable asparaginase activity was found in 81 of 88 Ab-positive patients shortly after asparaginase injections (94% neutralizing Ab). The Ab-positive patients with clinical allergies subsequently were given Erwinase and achieved substantial activity (0.1-0.4 IU/ml). An interim analysis of 280 patients who were followed for 30 months from induction demonstrated that the Ab-positive titers during interim maintenance-1 and in delayed intensification-1 were associated with an increased rate of events. The CCG-1961 treatment schedule was very immunogenic, plausibly due to initially administrated native asparaginase. Anti-asparaginase Ab was associated with undetectable asparaginase activity and may be correlated with adverse outcomes in HR ALL.
The discovery of the tumour-inhibitory properties of asparaginase began 50 years ago with the observation that guinea-pig serum-treated lymphoma-bearing mice underwent rapid and often complete regression. Soon afterwards, the asparaginase of bacterial origin was isolated. The asparaginases of bacterial origin induce anti-asparaginase neutralising antibodies in a large proportion of patients (44-60%), thus negating the specific enzymatic activity and resulting in failure of the target amino acid deamination in serum. There is immunological cross-reaction between the antibodies against various formulations of native Escherichia coli-asparaginase and polyethylene glycol (PEG)-asparaginases, but not to Erwinia asparaginase, as suggested by laboratory preclinical findings. This evidence was strongly inferred from the interim analyses in the Children's Cancer Group (CCG)-1961 study. Thus, anti-E. coli or PEG-asparaginase antibodies seropositive patients may benefit from the Erwinia asparaginase. The inter-relationships between asparaginase activity, asparagine (ASN) and glutamine deamination remain largely unexplored in patients. Studies have shown that ASN depletion is insufficient to induce apoptosis in T lymphoblasts in vitro and that the inhibitory concentration of CEM T-cell line is correlated with the asparaginase concentration responsible for 50% glutamine deamination. The optimal catalysis of ASN and glutamine deamination in serum by asparaginase induces apoptosis of leukaemic lymphoblasts. The percentage of ASN and glutamine deamination was predicted by asparaginase activity. Asparaginase activity of 0.1 IU/mL provided insufficient depletion of both amino acids in high-risk acute lymphoblastic leukaemia (ALL) patients. With increasing glutamine deamination, mean asparaginase activities and percentages of post-treatment samples with effective ASN depletion (<3 micromol/L) increase. Both glutamine and ASN deamination are predicted by asparaginase activity. Further population analyses resulted in identification of sigmoid relationships between asparaginase levels and post-treatment glutamine and ASN deamination.Furthermore, pharmacodynamic analyses strongly suggested that >/=90% deamination of glutamine must occur before optimal ASN deamination takes place, due to the de novo ASN biosynthesis by the liver. These pharmacodynamic results from the best-fit population pharmacokinetic/pharmacodynamic model obtained from nonlinear mixed effects model pharmacodynamic analyses for standard-risk ALL patients are similar. These analyses produced the following results: (i) asparaginase activity =0.4 IU/mL provided insufficient deamination of ASN, whereas >0.4-0.7 IU/mL was required for optimal (90%) ASN and glutamine deamination; and (ii) deamination of glutamine is dependent on asparaginase activity and it correlates with enhanced serum ASN deamination. Thus, glutamine deamination enhances asparaginase efficacy in ALL patients. Deamination of ASN >/=90% of control or ASN concentration <3 micromol/L may be associated with...
The clinical practice of oncology is being transformed by molecular diagnostics that will enable predictive and personalized medicine. Current technologies for quantitation of the cancer proteome are either qualitative (e.g., immunohistochemistry) or require large sample sizes (e.g., flow cytometry). Here, we report a microfluidic platform, Microfluidic Image Cytometry (MIC), capable of quantitative, single-cell proteomic analysis of multiple signaling molecules using only 1,000-2,800 cells. Using cultured cell lines, we demonstrate simultaneous measurement of four critical signaling proteins (EGFR, PTEN, phospho-Akt and phospho-S6) within the oncogenic PI3K/Akt/mTOR signaling pathway. To demonstrate the clinical application of the MIC platform to solid tumors, we analyzed a panel of 19 human brain tumor biopsies, including glioblastomas. Our MIC measurements were validated by clinical immunohistochemistry and confirmed the striking inter- and intra-tumoral heterogeneity characteristic of glioblastoma. To interpret the multiparameter, single-cell MIC measurements, we adapted bioinformatic methods including self-organizing maps that stratify patients into clusters which predict tumor progression and patient survival. Together with bioinformatic analysis, the MIC platform represents a robust, enabling in vitro molecular diagnostic technology for systems pathology analysis and personalized medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.