We describe an operator splitting technique based on physics rather than on dimension for the numerical solution of a nonlinear system of partial differential equations which models three-phase flow through heterogeneous porous media. The model for three-phase flow considered in this work takes into account capillary forces, general relations for the relative permeability functions and variable porosity and permeability fields. In our numerical procedure a high resolution, nonoscillatory, second order, conservative central difference scheme is used for the approximation of the nonlinear system of hyperbolic conservation laws modeling the convective transport of the fluid phases. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the parabolic and elliptic problems associated with the diffusive transport of fluid phases and the pressure-velocity problem. This numerical procedure has been used to investigate the existence and stability of nonclassical shock waves (called transitional or undercompressive shock waves) in two-dimensional heterogeneous flows, thereby extending previous results for one-dimensional flow problems. Numerical experiments indicate that the operator splitting technique discussed here leads to computational efficiency and accurate numerical results.
Please cite this article in press as: E. Abreu et al., Weak asymptotic methods for scalar equations and systems, J. Math. Anal. Appl. (2016), http://dx.
AbstractIn this paper we show how one can construct families of continuous functions which satisfy asymptotically scalar equations with discontinuous nonlinearity and systems having irregular solutions. This construction produces weak asymptotic methods which are issued from Maslov asymptotic analysis. We obtain a sequence of functions which tend to satisfy the equation(s) in the weak sense in the space variable and in the strong sense in the time variable. To this end we reduce the partial differential equations to a family of ordinary differential equations in a classical Banach space. For scalar equations we prove that the initial value problem is well posed in the L 1 sense for the approximate solutions we construct. Then we prove that this method gives back the widely accepted solutions when they are known. For systems we obtain existence in the general case and uniqueness in the analytic case using an abstract Cauchy-Kovalevska theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.