We present a new nucleosynthesis process that we denote as the nu p process, which occurs in supernovae (and possibly gamma-ray bursts) when strong neutrino fluxes create proton-rich ejecta. In this process, antineutrino absorptions in the proton-rich environment produce neutrons that are immediately captured by neutron-deficient nuclei. This allows for the nucleosynthesis of nuclei with mass numbers A>64, , making this process a possible candidate to explain the origin of the solar abundances of (92,94)Mo and (96,98)Ru. This process also offers a natural explanation for the large abundance of Sr seen in a hyper-metal-poor star.
In this paper we use high quality X-ray observations from XMM-Newton and Chandra to gain new insights into the explosion that originated Tycho's supernova 433 years ago. We perform a detailed comparison between the ejecta emission from the spatially integrated X-ray spectrum of the supernova remnant and current models for Type Ia supernova explosions. We use a grid of synthetic X-ray spectra based on hydrodynamic models of the evolution of the supernova remnant and nonequilibrium ionization calculations for the state of the shocked plasma. We find that the fundamental properties of the X-ray emission in Tycho are well reproduced by a one-dimensional delayed detonation model with a kinetic energy of ∼ 1.2 · 10 51 erg. All the other paradigms for Type Ia explosions that we have tested fail to provide a good approximation to the observed ejecta emission, including one-dimensional deflagrations, pulsating delayed detonations and sub-Chandrasekhar explosions, as well as deflagration models calculated in three dimensions. Our results require that the supernova ejecta retain some degree of chemical stratification, with Fe-peak elements interior to intermediate mass elements. This strongly suggests that a supersonic burning front (i.e., a detonation) must be involved at some stage in the physics of Type Ia supernova explosions.
With presently known input physics and computer simulations in 1D, a self-consistent treatment of core collapse supernovae does not yet lead to successful explosions, while 2D models show some promise. Thus, there are strong indications that the delayed neutrino mechanism works combined with a multi-D convection treatment for unstable layers (possibly with the aid of rotation, magnetic fields and/or still existent uncertainties in neutrino opacities). On the other hand there is a need to provide correct nucleosynthesis abundances for the progressing field of galactic evolution and observations of low metallicity stars. The innermost ejecta is directly affected by the explosion mechanism, i.e. most strongly the yields of Fe-group nuclei for which an induced piston or thermal bomb treatment will not provide the correct yields because the effect of neutrino interactions is not included. We apply parameterized variations to the neutrino scattering cross sections in order to mimic in 1D the possible increase of neutrino luminosities caused by uncertainties in proto-neutron star convection. Alternatively, parameterized variations are applied to the neutrino absorption cross sections on nucleons in the "gain region" to mimic the increase in neutrino energy deposition enabled by convective turnover. We find that both measures lead to similar results, causing explosions and a Y e > 0.5 in the innermost ejected layers, due to the combined effect of a short weak interaction time scale and a negligible electron degeneracy, unveiling the proton-neutron mass difference. We include all weak interactions (electron and positron capture, beta-decay, neutrino and antineutrino capture on nuclei, and neutrino and antineutrino capture on nucleons) and present first nucleosynthesis results for these innermost ejected layers to discuss how they improve predictions for Fe-group nuclei. The proton-rich environment results in enhanced abundances of 45 Sc, 49 Ti, and 64 Zn as requested by chemical evolution studies and observations of low metallicity stars as well as appreciable production of nuclei in the mass range up to A = 80.
We explore the relationship between the models for progenitor systems of Type Ia supernovae and the properties of the supernova remnants that evolve after the explosion. Most models for Type Ia progenitors in the single-degenerate scenario predict substantial outflows during the presupernova evolution. Expanding on previous work, we estimate the imprint of these outflows on the structure of the circumstellar medium at the time of the supernova explosion, and the effect that this modified circumstellar medium has on the evolution of the ensuing supernova remnant. We compare our simulations with the observational properties of known Type Ia supernova remnants in the Galaxy ( Kepler, Tycho, SN 1006), the Large Magellanic Cloud (0509À67.5, 0519À69.0, N103B), and M31 (SN 1885). We find that optically thick outflows from the white dwarf surface (sometimes known as ''accretion winds'') with velocities above 200 km s À1 excavate large low-density cavities around the progenitors. Such large cavities are incompatible with the dynamics of the forward shock and the X-ray emission from the shocked ejecta in all the Type Ia remnants that we have examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.