Cool ambient temperatures (5 to 20 °C) and water deficit are the only factors known to induce flowering in sweet orange (Citrus sinensis). Whereas the effects of cool ambient temperatures on flowering have been described extensively, reports on the mechanisms underlying floral induction by water deficit in sweet orange (and other tropical and subtropical species) are scarce. We report changes in the accumulation of transcripts of four flower-promoting genes, CsFT, CsSL1, CsAP1, and CsLFY, in sweet orange trees in response to water deficit or a combination of water deficit and cool temperatures under controlled conditions. Exposure to water deficit increased the accumulation of CsFT transcripts, whereas transcripts of CsSL1, CsAP1, and CsLFY were reduced. However, when water deficit was interrupted by irrigation, accumulation of CsFT transcripts returned rapidly to pre-treatment levels and accumulation of CsSL1, CsAP1, and CsLFY increased. The accumulation of CsFT transcripts in trees during the combined water deficit and cool temperatures treatment was higher than in trees exposed to either factor separately, and accumulation of CsAP1 and CsLFY transcripts after the combined treatment was also higher. These results suggest that water deficit induces flowering through the upregulation of CsFT and that CsFT is the leaf integrator of flower-inducing signals generated by the exposure to water deficit and cool temperatures in sweet orange.
The haploid and diploid karyotypes of Tapinoma erraticum (n = 8) and Tapinoma nigerrimum (n = 9) were analyzed using C-banding and observation of NOR sites. C-banding showed the existence of heterochromatin in the paracentromeric regions of all chromosomes. The analysis of NOR sites in these species proved the existence of primary activity NOR in one or two chromosomes, respectively, whereas the other chromosomes showed secondary activity NOR, expressed only in a minority of cells. In both species the NOR were located in paracentromeric regions. These results are discussed in relation to a hypothesis of chromosome differentiation of these species.
As in arabidopsis (Arabidopsis thaliana), putative citrus (Citrus) Flowering locus T (FT) homologs are strong promoters of flowering and apparently are key components of the molecular mechanism controlling floral induction in these species. An abundance of citrus FT gene transcripts during floral induction is consistent with the role of their products as floral-promoting signals. However, specific details about how the floral induction process is initiated and sustained remain largely unknown. We report changes in transcript abundance of a FT gene (CsFT) from sweet orange (Citrus sinensis) at the onset of floral induction by low temperatures and at different times of the day. Using a combination of field and growth room experiments, we determined that the abundance of CsFT transcripts increased within 1 day after initial exposure to cool floral-inductive temperatures, and that CsFT transcript abundance was higher in the afternoon than in the morning and evening. The presence of photoperiod cycles seemed to be required to sustain the increasing CsFT transcript abundance, because exposure to floral inductive conditions under continuous light or darkness did not increase the abundance of CsFT transcripts after 3 days. Our results suggest that the regulation of CsFT expression responds rapidly (overnight) to the onset of floral-inductive cool temperatures, is sensitive to changes in temperature, and requires alternation of light and dark cycles to sustain transcript accumulation during induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.