Background To date, no immunological data on COVID-19 heterologous vaccination schedules in humans have been reported. We assessed the immunogenicity and reactogenicity of BNT162b2 (Comirnaty, BioNTech, Mainz, Germany) administered as second dose in participants primed with ChAdOx1-S (Vaxzevria, AstraZeneca, Oxford, UK). Methods We did a phase 2, open-label, randomised, controlled trial on adults aged 18–60 years, vaccinated with a single dose of ChAdOx1-S 8–12 weeks before screening, and no history of SARS-CoV-2 infection. Participants were randomly assigned (2:1) to receive either BNT162b2 (0·3 mL) via a single intramuscular injection (intervention group) or continue observation (control group). The primary outcome was 14-day immunogenicity, measured by immunoassays for SARS-CoV-2 trimeric spike protein and receptor binding domain (RBD). Antibody functionality was assessed using a pseudovirus neutralisation assay, and cellular immune response using an interferon-γ immunoassay. The safety outcome was 7-day reactogenicity, measured as solicited local and systemic adverse events. The primary analysis included all participants who received at least one dose of BNT162b2 and who had at least one efficacy evaluation after baseline. The safety analysis included all participants who received BNT162b2. This study is registered with EudraCT (2021-001978-37) and ClinicalTrials.gov ( NCT04860739 ), and is ongoing. Findings Between April 24 and 30, 2021, 676 individuals were enrolled and randomly assigned to either the intervention group (n=450) or control group (n=226) at five university hospitals in Spain (mean age 44 years [SD 9]; 382 [57%] women and 294 [43%] men). 663 (98%) participants (n=441 intervention, n=222 control) completed the study up to day 14. In the intervention group, geometric mean titres of RBD antibodies increased from 71·46 BAU/mL (95% CI 59·84–85·33) at baseline to 7756·68 BAU/mL (7371·53–8161·96) at day 14 (p<0·0001). IgG against trimeric spike protein increased from 98·40 BAU/mL (95% CI 85·69–112·99) to 3684·87 BAU/mL (3429·87–3958·83). The interventional:control ratio was 77·69 (95% CI 59·57–101·32) for RBD protein and 36·41 (29·31–45·23) for trimeric spike protein IgG. Reactions were mild (n=1210 [68%]) or moderate (n=530 [30%]), with injection site pain (n=395 [88%]), induration (n=159 [35%]), headache (n=199 [44%]), and myalgia (n=194 [43%]) the most commonly reported adverse events. No serious adverse events were reported. Interpretation BNT162b2 given as a second dose in individuals prime vaccinated with ChAdOx1-S induced a robust immune response, with an acceptable and manageable reactogenicity profile. Funding Instituto de Salud Carlos III. Translations For the French and Spanish translations of the abstract see Supplementary Materials section.
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
Autosomal recessive disorders of B cell development are rare and heterogeneous. To determine the proportion of affected patients who have defects in the micro heavy chain (IGHM) gene, we used single-stranded conformational polymorphism analysis to screen genomic DNA from 40 unrelated patients with early onset infections, profound hypogammaglobulinemia, and absent B cells. All of the patients were genotypically normal in BTK, the gene that underlies X-linked agammaglobulinemia. Eight different mutations in the micro heavy chain were identified in 19 members of 12 unrelated families. Four of the mutations were large deletions that removed more than 40 kb of DNA in the IGHM locus. In six of the 12 families, the affected patients had an identical single base pair substitution, a G-->A, at the -1 position of the alternative splice site. Immunoglobulin haplotype analysis showed that this mutation occurred on at least three different haplotypes, indicating that this is a hot spot for mutations. Compared with patients with mutations in Btk, patients with defects in the micro heavy chain had an earlier onset of disease and more complications. Our study indicates that at least 20-30% of patients with autosomal recessive defects in B cell development have mutations in the micro heavy chain.
NHEJ1-patients develop severe progressive lymphocytopenia and premature aging of hematopoietic stem cells (HSCs) at a young age. Here we show a patient with a homozygous-NHEJ1 mutation identified by whole exome-sequencing that developed severe pancytopenia and bone marrow aplasia correlating with the presence of short telomeres. The mutation resulted in a truncated protein. In an attempt to identify the mechanism behind the short telomere phenotype found in the NHEJ1-patient we downregulated NHEJ1 expression in 293T and CD34+cells. This downregulation resulted in reduced telomerase activity and decreased expression of several telomerase/shelterin genes. Interestingly, cell lines derived from two other NHEJ1-deficient patients with different mutations also showed increased p21 expression, inhibition in expression of several telomerase complex genes and shortened telomeres. Decrease in expression of telomerase/shelterin genes did not occur when we inhibited expression of other NHEJ genes mutated in SCID patients: DNA-PK, Artemis or LigaseIV. Because premature aging of HSCs is observed only in NHEJ1 patients, we propose that is the result of senescence induced by decreased expression of telomerase/shelterin genes that lead to an inhibition of telomerase activity. Previous reports failed to find this connection because of the use of patient´s cells immortalized by TERT expression or recombined telomeres by ALT pathway. In summary, defective regulation of telomere biology together with defective V(D)J recombination can negatively impact on the evolution of the disease in these patients. Identification of telomere shortening is important since it may open new therapeutic interventions for these patients by treatments aimed to recover the expression of telomerase genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.