Background
Technology advancement has rising in the past decade and brought several innovations and improvements. In dentistry, this advances provided more comfortable and quick procedures to both the patient and the dental surgeon, generating less predictability in the final result. Several techniques has been developed for the preparation of surgical guides aiming at the optimization of surgical procedures. The present study aimed to evaluate the reproducibility and precision of two types of surgical guides obtained using 3D printing and milling methods.
Methods
A virtual model was developed that allowed the virtual design of milled (n = 10) or 3D printed (n = 10) surgical guides. The surgical guides were digitally oriented and overlapped on the virtual model. For the milling guides, the Sirona Dentsply system was used, while the 3D printing guides were produced using EnvisionTEC’s Perfactory P4K Life Series 3D printer and E-Guide Tint, a biocompatible Class I certified material. The precision and trueness of each group during overlap were assessed. The data were analyzed with GraphPad software using the Kolmogorov–Smirnov test for normality and Student’s t test for the variables.
Results
The Kolmogorov–Smirnov test showed a normal distribution of the data. Comparisons between groups showed no statistically significant differences for trueness (p = 0.529) or precision (p = 0.3021). However, a significant difference was observed in the standard deviation of mismatches regarding accuracy from the master model (p < 0.0001).
Conclusions
Within the limits of this study, surgical guides fabricated by milling or prototyped processes achieved similar results.
The purpose of this study was to compare the accuracy of stereolithographic casts (SCs) with those obtained using conventional implant impressions. An epoxy resin model containing dental implants was used as master model. Dental casts (n = 10) were fabricated through both conventional and digital implant impressions. The conventional casts (CCs), SCs, and the master model were digitized, and the accuracy was determined through a deviation analysis and linear measurements. Data were analyzed using paired Student t test with P < .05. The SCs showed higher deviation at the vestibular area (CC: 41 ± 28.87 μm; SC: 117 ± 36.83 μm) and lingual cusps (CC: 40.70 ± 19.79 μm; SC: 80 ± 42.95 μm) in comparison with CCs. No statistically significant difference was found for linear measurements of conventional and digital casts. The entire-arch accuracy was comparable between casts. However, SCs were less accurate at the cusp level in comparison with CCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.