A comprehensive three-dimensional picture of magnetic ordering in high-density arrays of segmented FeGa/Cu nanowires is experimentally realized through the application of polarized small-angle neutron scattering. The competing energetics of dipolar interactions, shape anisotropy, and Zeeman energy in concert stabilize a highly tunable spin structure that depends heavily on the applied field and sample geometry. Consequently, we observe ferromagnetic and antiferromagnetic interactions both among wires and between segments within individual wires. The resulting magnetic structure for our nanowire sample in a low field is a fan with magnetization perpendicular to the wire axis that aligns nearly antiparallel from one segment to the next along the wire axis. Additionally, while the low-field interwire coupling is ferromagnetic, application of a field tips the moments toward the nanowire axis, resulting in highly frustrated antiferromagnetic stripe patterns in the hexagonal nanowire lattice. Theoretical calculations confirm these observations, providing insight into the competing interactions and resulting stability windows for a variety of ordered magnetic structures. These results provide a roadmap for designing high-density magnetic nanowire arrays for spintronic device applications.
Recent evidence has shown that nanoparticles that have been used to improve or create new functional properties for common products may pose potential risks to human health. Silicon dioxide (SiO) has emerged as a promising therapy vector for the heart. However, its potential toxicity and mechanisms of damage remain poorly understood. This study provides the first exploration of SiO-induced toxicity in cultured cardiomyocytes exposed to 7- or 670-nm SiO particles. We evaluated the mechanism of cell death in isolated adult cardiomyocytes exposed to 24-h incubation. The SiO cell membrane association and internalization were analyzed. SiO showed a dose-dependent cytotoxic effect with a half-maximal inhibitory concentration for the 7 nm (99.5 ± 12.4 µg/ml) and 670 nm (>1,500 µg/ml) particles, which indicates size-dependent toxicity. We evaluated cardiomyocyte shortening and intracellular Ca handling, which showed impaired contractility and intracellular Ca transient amplitude during β-adrenergic stimulation in SiO treatment. The time to 50% Ca decay increased 39%, and the Ca spark frequency and amplitude decreased by 35 and 21%, respectively, which suggest a reduction in sarcoplasmic reticulum Ca-ATPase (SERCA) activity. Moreover, SiO treatment depolarized the mitochondrial membrane potential and decreased ATP production by 55%. Notable glutathione depletion and HO generation were also observed. These data indicate that SiO increases oxidative stress, which leads to mitochondrial dysfunction and low energy status; these underlie reduced SERCA activity, shortened Ca release, and reduced cell shortening. This mechanism of SiO cardiotoxicity potentially plays an important role in the pathophysiology mechanism of heart failure, arrhythmias, and sudden death. Silica particles are used as novel nanotechnology-based vehicles for diagnostics and therapeutics for the heart. However, their potential hazardous effects remain unknown. Here, the cardiotoxicity of silica nanoparticles in rat myocytes has been described for the first time, showing an impairment of mitochondrial function that interfered directly with Ca handling.
We have developed a remotely controlled dynamic process of manipulating targeted biological live cells using fabricated core-shell nanocomposites, which comprises of single crystalline ferromagnetic cores (CoFe2O4) coated with crystalline ferroelectric thin film shells (BaTiO3). We demonstrate them as a unique family of inorganic magnetoelectric nanorobots (MENRs), controlled remotely by applied a.c. or d.c. magnetic fields, to perform cell targeting, permeation, and transport. Under a.c. magnetic field excitation (50 Oe, 60 Hz), the MENR acts as a localized electric periodic pulse generator and can permeate a series of misaligned cells, while aligning them to an equipotential mono-array by inducing inter-cellular signaling. Under a.c. magnetic field (40 Oe, 30 Hz) excitation, MENRs can be dynamically driven to a targeted cell, avoiding untargeted cells in the path, irrespective of cell density. D.C. magnetic field (−50 Oe) excitation causes the MENRs to act as thrust generator and exerts motion in a group of cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.